73 resultados para tablet formulation
Resumo:
Purpose of review: The aim of this article is to summarize the latest information on microbicide formulations for prevention of sexual transmission of HIV infection in women. Recent findings: Although early microbicide formulations were conventionally coitally dependent gel products, new technologies are being developed for vaginal delivery of anti-HIV agents. Intravaginal rings for delivery of microbicides, for example, are being developed and evaluated clinically. Safety and acceptability data are available for many microbicide gels and for one microbicide intravaginal ring. Other microbicide formulations in development for once daily or other vaginal administration strategies include films, tablets, and ovules. Various microbicide formulations for rectal administration are also in development. Summary: New microbicide formulations in development are addressing many of the issues with the original gels such as coital dependency, frequency of use, acceptability, compliance, cost, and adaptability to large-scale production. All of these dosage forms are promising options for safe, effective, and acceptable microbicide products.
Resumo:
A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful
Resumo:
A novel 5-aminolevulinic acid (ALA)-containing microparticulate system was produced recently, based on incorporation of ALA into particles prepared from a suppository base that maintains drug stability during storage and melts at skin temperature to release its drug payload. The novel particulate system was applied to the skin of living animals, followed by study of protoporphyrin IX (PpIX) production. The effect of formulating the microparticles in different vehicles was investigated and also the phototoxicity of the PpIX produced using a model tumour. Particles formulated in propylene glycol gels (10% w/w ALA loading) generated the highest peak PpIX fluorescence levels in normal mouse skin. Peak PpIX levels induced in skin overlying subcutaneously implanted WiDr tumours were significantly lower than in normal skin for both the 10% w/w ALA microparticles alone and the 10% w/w ALA microparticles in propylene glycol gels during continuous 12 h applications. Tumours not treated with photodynamic therapy continued to grow over the 17 days of the anti-tumour study. However, those treated with 12 h applications of either the 10% w/w ALA microparticles alone or the 10% w/w ALA microparticles in propylene glycol gel followed by a single laser irradiation showed no growth. The gel formulation performed slightly better once again, reducing the tumour growth rate by approximately 105%, compared with the 89% reduction achieved using particles alone. Following the promising results obtained in this study, work is now going on to prepare particle-loaded gels under GMP conditions with the aim of initiating an exploratory clinical trial.
Resumo:
Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.