38 resultados para separazione gas PTMSP membrane grafene cattura CO2
Resumo:
The evolution of the optical sensor for CO2 over the past two decades is outlined and illustrated through examples of luminescent-based sensors. The basic principles and design of the early 'wet covered' type sensor, in which a pH sensitive dye in an aqueous buffer is covered by a gas permeable, ion impermeable, membrane, are outlined. The gradual move from the 'wet covered' types of CO2 optical sensor to 'solid-water droplet' type sensors and then onto 'solid' sensors is charted. The basic design and principles of operation of the modern 'solid' optical sensor for P-CO2 is covered in some detail. Other sensing strategies outside the simple use of pH-sensitive dyes are also considered, most notably those based on luminescence lifetime measurements.
Resumo:
A homologous family of dialkyl phthalates has been used to investigate the effect of plasticizer/polymer compatibility on the response characteristics of transparent, plastic, thin optical gas sensing films for CO2 and oxygen. Plasticizer/polymer compatibilities were determined through the value of the difference in solubility parameter, i.e. Delta delta, for the plasticizer and polymer with a Delta delta value of zero indicating high compatibility. A strong correlation was found between plasticizer/polymer compatibility and sensitivity in phenol red/ethyl cellulose CO2-sensitive films and this relationship extended to CO2-sensitive films based on other polymers such as polystyrene and poly(methyl methacrylate). It extended also to optical O-2-sensitive films implying that the relationship is general for thin-film optical sensors. Other results from the CO2-sensitive films in different polymers indicated that the film sensitivity is largely independent of the polymer matrix regardless of its inherent gas permeability, when a sufficient quantity of compatible plasticizer is present. (C) 1998 Elsevier Science B.V.
Resumo:
The basic theory behind conventional colourimetric and fluorimetric optical sensors for CO2 is examined and special attention is given to the effect on sensor response of the key parameters of initial base concentration and dye acid dissociation constant, K(D). Experimental results obtained in aqueous solution using a variety of different dyes and initial base concentrations are consistent with the predictions made by the theoretical model. A series of model-generated pK(D) versus %CO2 curves for different initial base concentrations allow those interested in constructing an optical CO2 sensor to readily identify the optimum dye/initial base combination for their sensor; the response of the sensor can be subsequently fine-tuned through a minor variation in the initial base concentration. The model and all its predictions appear also to apply to the new generation of plastic film CO2 sensors which have just been developed.
Resumo:
Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: A full-thickness macular hole (FTMH) is a common retinal condition associated with impaired vision. Randomised controlled trials (RCTs) have demonstrated that surgery, by means of pars plana vitrectomy and post-operative intraocular tamponade with gas, is effective for stage 2, 3 and 4 FTMH. Internal limiting membrane (ILM) peeling has been introduced as an additional surgical manoeuvre to increase the success of the surgery; i.e. increase rates of hole closure and visual improvement. However, little robust evidence exists supporting the superiority of ILM peeling compared with no-peeling techniques. The purpose of FILMS (Full-thickness macular hole and Internal Limiting Membrane peeling Study) is to determine whether ILM peeling improves the visual function, the anatomical closure of FTMH, and the quality of life of patients affected by this disorder, and the cost-effectiveness of the surgery. Methods/Design: Patients with stage 2-3 idiopathic FTMH of less or equal than 18 months duration (based on symptoms reported by the participant) and with a visual acuity = 20/40 in the study eye will be enrolled in this FILMS from eight sites across the UK and Ireland. Participants will be randomised to receive combined cataract surgery (phacoemulsification and intraocular lens implantation) and pars plana vitrectomy with postoperative intraocular tamponade with gas, with or without ILM peeling. The primary outcome is distance visual acuity at 6 months. Secondary outcomes include distance visual acuity at 3 and 24 months, near visual acuity at 3, 6, and 24 months, contrast sensitivity at 6 months, reading speed at 6 months, anatomical closure of the macular hole at each time point (1, 3, 6, and 24 months), health related quality of life (HRQOL) at six months, costs to the health service and the participant, incremental costs per quality adjusted life year (QALY) and adverse events. Discussion: FILMS will provide high quality evidence onthe role of ILM peeling in FTMH surgery. © 2008 Lois et al; licensee BioMed Central Ltd.
Resumo:
PURPOSE. To determine whether internal limiting membrane (ILM) peeling is effective and cost effective compared with no peeling in patients with idiopathic stage 2 or 3 full-thickness maculay hole (FTMH). METHODS. This was a pragmatic multicenter randomized controlled trial. Eligible participants from nine centers were randomized to ILM peeling or no peeling (1:1 ratio) in addition to phacovitrectomy, including detachment and removal of the posterior hyaloid and gas tamponade. The primary outcome was distance visual acuity (VA) at 6 months after surgery. Secondary outcomes included hole closure, distance VA at other time points, near VA, contrast sensitivity, reading speed, reoperations, complications, resource use, and participant-reported health status, visual function, and costs. RESULTS. Of 141 participants randomized in nine centers, 127 (90%) completed the 6-month follow-up. Nonstatistically significant differences in distance visual acuity at 6 months were found between groups (mean difference, 4.8; 95% confidence interval [CI], -0.3 to 9.8; P = 0.063). There was a significantly higher rate of hole closure in the ILM-peel group (56 [84%] vs. 31 [48%]) at 1 month (odds ratio [OR], 6.23; 95% CI, 2.64-14.73; P <0.001) with fewer reoperations (8 [12%] vs. 31 [48%]) performed by 6 months (OR, 0.14; 95% CI, 0.05- 0.34; P <0.001). Peeling the ILM is likely to be cost effective. CONCLUSIONS. There was no evidence of a difference in distance VA after the ILM peeling and no-ILM peeling techniques. An important benefit in favor of no ILM peeling was ruled out. Given the higher anatomic closure and lower reoperation rates in the ILM-peel group, ILM peeling seems to be the treatment of choice for idiopathic stage 2 to 3 FTMH. © 2011 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
An inverse CeO2/CuO catalyst has been investigated by operando steady-state isotopic transient kinetic analysis (SSITKA) in combination with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under 3% CO +3% H2O reactant mixture at 473 K with the aim of determining intermediates involved in the water gas shift reaction at relatively low temperatures. Among the various species detected in the infrared spectra which may be involved in the reaction, i.e. formates, copper carbonyls and carbonates, a particular type of carbonate species is identified as a reaction intermediate on the basis of detailed analysis of the spectra during isotopic exchange in comparison with the change in the corresponding isotopically labelled CO2 product.
Resumo:
The combination of ionic liquids (ILs) and supercritical CO2 (scCO2) allows efficient catalytic processes to be developed. Catalyst separation is generally a major challenge when enzymes or homogeneous organometallic catalysts are utilised for reactions, and IL–scCO2 systems address these separation problems, facilitating the recycling or continual use of the catalyst. Typically these systems involve a catalyst being dissolved in an IL and this is where it remains during the process, with scCO2 extracting the products from the IL (catalyst) phase. ILs and many catalysts are not soluble in scCO2 and this facilitates the clean separation of products from the catalyst and IL. When the pressure is reduced in a collection chamber, the scCO2 returns to CO2 gas and products can be obtained without contamination of catalyst or solvents. It is possible to operate IL–scCO2 systems in a continuous flow manner and this further improves the efficiency and industrial potential of these systems. This chapter will introduce the fundamental properties of these multiphase catalytic systems. It will also highlight key examples of catalytic processes from the academic literature which illustrate the benefits of utilising this combination of solvents for catalysis
Resumo:
We perform DFT calculations to investigate the redox and formate mechanisms of water-gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad '' + *'--> H-ad' + O-ad"; (2) H-ad' + OHad '' --> H-2(g) + O-ad '' + *'; and (3) OHad" + OHad '' --> 2O(ad '') + H-2(g) (*': the free adsorption sites on the oxides; ad': adsorption on the metal; ad": adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm-1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10-4. © 2012 Springer-Verlag.
Resumo:
Dense ceramics with mixed protonic-electronic conductivity are of considerable interest for the separation and purification of hydrogen and as electrochemical reactors. In this work, the hydrogen permeability of a Sr0.97Ce0.9Yb0.1O3 - δ (SCYb) membrane with a porous Pt catalytic layer on the hydrogen feed-exposed side has been studied over the temperature range 500-804 °C employing Ar as the permeate sweep gas. A SiO2-B2O3-BaO-MgO-ZnO-based glass-ceramic sealant was successfully employed to seal the membrane to the dual-chamber reactor. After 14 h of exposure to 10% H2:90% N2 at 804 °C, the H2 flux reached a maximum of 33 nmol cm- 2 s- 1, over an order of magnitude higher than that obtained on membranes of similar thickness without surface modification. The permeation rate then decreased slowly and moderately on annealing at 804 °C over a further 130 h. Thereafter, the flux was both reproducible and stable on thermal cycling in the range 600-804 °C. The results indicate an important role of superficial activation processes in the flux rate and suggest that hydrogen fluxes can be further optimised in cerate-based perovskites. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A dual chamber membrane reactor was used in order to study the effect of macroscopically applied oxygen chemical potential differences to a platinum catalyst supported on a mixed oxygen ion and electronic conducting membrane. It is believed that the oxygen chemical potential difference imposed by the use of an oxygen sweep in one of the reactor chambers causes the back-spillover of oxygen species from the support onto the catalyst surface, resulting in the modification of the catalytic activity. The use of different sweep gases, such as ethylene and hydrogen was investigated as the means to reverse the rate modification by removing the spilt over species from the catalyst surface and returning the system to its initial state. Oxygen sweep in general had a positive effect on the reaction rate with rate increases up to 20% measured. Experimental results showed that hydrogen is a more potent sweep gas than ethylene in terms of the ability to reverse rate modification. A 10% rate loss was observed when using an ethylene sweep as compared with an almost 60% rate decrease when hydrogen was used as the sweep gas. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
A novel configuration for the in situ control of the catalytic activity of a polycrystalline Pt catalyst supported on a mixed ionic electronic conducting (MIEC) substrate is investigated. The modification of the catalytic activity is achieved by inducing the reverse spillover of oxygen promoting species from the support onto the catalyst surface, thus modifying the chemisorptive bond energy of the gas phase adsorbed reactants. This phenomenon is known as Electrochemical Promotion of Catalysis (EPOC). In this work we investigate the use of a wireless system that takes advantage of the mixed ionic electronic conductivity of the catalyst support (internally short-circuiting the system) in a dual chamber reactor. In this wireless configuration, the reaction takes place in one chamber of the membrane reactor while introduction of the promoting species is achieved by the use of an appropriate sweep gas (and therefore control of the oxygen chemical potential difference across the membrane) on the other chamber. Experimental results have shown that the catalytic rate can be enhanced by using an oxygen sweep, while a hydrogen sweep can reverse the changes. Total rate enhancement ratios of up to 3.5 were measured. © 2008 Elsevier B.V. All rights reserved.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.