24 resultados para remote sensing (RS)
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation (DE) approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The availability of electricity is fundamental to modern society. It is at the top of the list of critical infrastructures and its interruption can have severe consequences. This highly important system is now evolving to become more reliable, efficient, and clean. This evolving infrastructure has become known as the smart grid; and these future smart grid systems will rely heavily on ICT. This infrastructure will require many servers and due to the nature of the grid, many of these systems will be geographically diverse requiring communication links. At the heart of this ICT infrastructure will be security. At each level of the smart grid from smart metering right through to remote sensing and control networks, security will be a key factor for system design consideration. With an increased number of ICT systems in place the security risk also increases. In this paper the authors discuss the changing nature of security in relation to the smart grid by looking at the move from legacy systems to more modern smart grid systems. The potential planes of attack for future smart grid systems are identified, and the general anatomy of a cyber-attack is presented. The authors then introduce the various threat levels of different types of attack and the mitigation techniques that could be put in place for each. Finally, the authors' introduce a Phasor Measurement Unit (PMU) communication system (operated by the authors) that can be used as a test-bed for some of the proposed future security research.
Resumo:
Slope instabilities – commonly triggered by rainfall – pose a geotechnical risk causing disruption to transport routes and incur significant financial resources. This article details laboratory, ground and remote sensing investigations carried out by Queen’s University Belfast and Transport Northern Ireland (TNI) to characterise and monitor slope instability on two higher risk infrastructure slopes in Northern Ireland. The research is used to update a noninvasive risk assessment model of slopes across the country’s road network to direct resources for future investigation.
Resumo:
Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.
Resumo:
In the coming decade installed offshore wind capacity is expected to expand rapidly. This will be both technically and economically challenging. Precise wind resource assessment is one of the more imminent challenges. It is more difficult to assess wind power offshore than onshore due to the paucity of representative wind speed data. Offshore site-specific data is less accessible and is far more costly to collect. However, offshore wind speed data collected from sources such as wave buoys, remote sensing from satellites, national weather ships, and coastal meteorological stations and met masts on barges and platforms may be extrapolated to assess offshore wind power. This study attempts to determine the usefulness of pre-existing offshore wind speed measurements in resource assessment, and presents the results of wind resource estimation in the Atlantic Ocean and in the Irish Sea using data from two offshore meteorological buoys. © 2012 IEEE.
Resumo:
In the coming decade installed offshore wind capacity is expected to expand rapidly. This will be both technically and economically challenging. Precise wind resource assessment is one of the more imminent challenges. It is more difficult to assess wind power offshore than onshore due to the paucity of representative wind speed data. Offshore site-specific data is less accessible and is far more costly to collect. However, offshore wind speed data collected from sources such as wave buoys, remote sensing from satellites, national weather ships, and coastal meteorological stations and met masts on barges and platforms may be extrapolated to assess offshore wind power. This study attempts to determine the usefulness of pre-existing offshore wind speed measurements in resource assessment, and presents the results of wind resource estimation in the Atlantic Ocean and in the Irish Sea using data from two offshore meteorological buoys
Resumo:
Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km2. Spatial patterns of invasive and native densities between the invader’s core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.
Resumo:
Monitoring glacier fluctuations provides insights into changing glacial environments and recent climate change. The availability of satellite imagery offers the opportunity to view these changes for remote and inaccessible regions. Gaining an understanding of the ongoing changes in such regions is vital if a complete picture of glacial fluctuations globally is to be established. Here, satellite imagery (Landsat 7, 8 and ASTER) is used to conduct a multi-annual remote sensing survey of glacier fluctuations on the Kamchatka Peninsula (eastern Russia) over the 2000–2014 period. Glacier margins were digitised manually and reveal that, in 2000, the peninsula was occupied by 673 glaciers, with a total glacier surface area of 775.7 ± 27.9 km2 . By 2014, the number of glaciers had increased to 738 (reflecting the fragmentation of larger glaciers), but their surface area had decreased to 592.9 ± 20.4 km2 . This represents a ∼ 24 % decline in total glacier surface area between 2000 and 2014 and a notable acceleration in the rate of area loss since the late 20th century. Analysis of possible controls indicates that these glacier fluctuations were likely governed by variations in climate (particularly rising summer temperatures), though the response of individual glaciers was modulated by other (non-climatic) factors, principally glacier size, local shading and debris cover.