70 resultados para props (object genres)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The masses previously obtained for the X-ray binary 2S 0921-630 inferred a compact object that was either a high-mass neutron star or low-mass black-hole, but used a previously published value for the rotational broadening (v sin i) with large uncertainties. Aims: We aim to determine an accurate mass for the compact object through an improved measurement of the secondary star's projected equatorial rotational velocity. Methods: We have used UVES echelle spectroscopy to determine the v sin i of the secondary star (V395 Car) in the low-mass X-ray binary 2S 0921-630 by comparison to an artificially broadened spectral-type template star. In addition, we have also measured v sin i from a single high signal-to-noise ratio absorption line profile calculated using the method of Least-Squares Deconvolution (LSD). Results: We determine v sin i to lie between 31.3±0.5 km s-1 to 34.7±0.5 km s-1 (assuming zero and continuum limb darkening, respectively) in disagreement with previous results based on intermediate resolution spectroscopy obtained with the 3.6 m NTT. Using our revised v sin i value in combination with the secondary star's radial velocity gives a binary mass ratio of 0.281±0.034. Furthermore, assuming a binary inclination angle of 75° gives a compact object mass of 1.37±0.13 M_?. Conclusions: We find that using relatively low-resolution spectroscopy can result in systemic uncertainties in the measured v sin i values obtained using standard methods. We suggest the use of LSD as a secondary, reliable check of the results as LSD allows one to directly discern the shape of the absorption line profile. In the light of the new v sin i measurement, we have revised down the compact object's mass, such that it is now compatible with a canonical neutron star mass.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.

Relevância:

20.00% 20.00%

Publicador: