206 resultados para planar antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A printed rcflectarray antenna, which generates a beam that can be electronically switched from a sum to a difference radiation pattern, is presented. This is achieved by applying a bias voltage of 20 V to one-half of the aperture, which is constructed above a 500 mu m cavity containing liquid crystals. Simulated results are shown to be in good agreement with measurements at X-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by introducing a gap at the center of the helical sections (where the current is minimum) of a lambda/2 quadrifilar helix antenna (QHA) and varying the axial length and radial gap between the overlapping volutes, the antenna gives a 28% impedance bandwidth which is nine times the bandwidth of a conventional QHA. A 16% bandwidth with a front to back ratio of >= 14 dB is achievable with 5-14% reduction in the size of the QHA. The structure can yield a monopole radiation pattern suitable for terrestrial applications or a hemispherical pattern suitable for satellite use. The simulation results are validated by measurements at L-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a side-fed bifilar helix antenna with a single feed, can generate a slant 451 linearly polarized onmidirectional toroidal pattern. The antenna has a low profile and does not require a ground plane. The bifilar helix antenna provides slant 45 degrees polarization over a solid angle of almost 4 pi steradians as compared to a crossed dipole which generates a tilted 45 degrees linearly, polarized pattern only over a solid angle of 1.14 pi steradians. The computed results are validated by experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impedance and radiation pattern parameters of a lambda/2 quadrifilar helix antenna (QHA) with turn angles in the range 0 degrees to 235 degrees are analyzed. It is shown that by selecting the helix turn angle to satisfy the minimum bandwidth and beamwidth requirements, an improved electrical performance and a reduction in the physical size of the antenna is obtained. This is demonstrated by comparing the performance of a conventional half turn QHA with structures having a smaller pitch length. The computed results are validated by experimental data at L-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A side-fed bifilar is shown to generate a similar radiation pattern as a dipole antenna, but the structure has a significantly reduced axial length. Simulated and measured results show that the helix turn angle can be used to control the ratio of the orthogonal linear field components and the input impedance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

20.00% 20.00%

Publicador: