28 resultados para numerical studies


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

14C wiggle-match dating (WMD) of peat deposits uses the non-linear relationship between 14C age and calendar age to match the shape of a sequence of closely spaced peat 14C dates with the 14C calibration curve. A numerical approach to WMD enables the quantitative assessment of various possible wiggle-match solutions and of calendar year confidence intervals for sequences of 14C dates. We assess the assumptions, advantages, and limitations of the method. Several case-studies show that WMD results in more precise chronologies than when individual 14C dates are calibrated. WMD is most successful during periods with major excursions in the 14C calibration curve (e.g., in one case WMD could narrow down confidence intervals from 230 to 36 yr).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental static and fatigue tension-tension tests were carried out on 5HS/RTM6 composite intact coupons and coupons incorporating adhesively-bonded (FM300-2) stepped flush joints. The results show that the adhesive joint, which is widely used in repairs, significantly reduces the static strength as well as the fatigue life of the composite. Both, the static and the fatigue failure of the ‘repaired’ coupons occur at the adhesive joint and involve crack initiation and propagation. The latter is modelled using interface finite elements based on the decohezive zone approach. The material degradation in the interface constitutive law is described by a damage variable, which can evolve due to the applied loads as well as the number of fatigue cycles. The fatigue formulation, based on a published model, is adapted to fit the framework of the pseudotransient formulation that is used as a numerical tool to overcome convergence difficulties. The fatigue model requires three material parameters. Numerical tests show that a single set of these parameters can be used to recover, very accurately, the experimental S-N relationship. Sensitivity studies show that the results are not mesh dependent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Assessing methodological quality of primary studies is an essential component of systematic reviews. Following a systematic review which used a domain based system [United States Preventative Services Task Force (USPSTF)] to assess methodological quality, a commonly used numerical rating scale (Downs and Black) was also used to evaluate the included studies and comparisons were made between quality ratings assigned using the two different methods. Both tools were used to assess the 20 randomized and quasi-randomized controlled trials examining an exercise intervention for chronic musculoskeletal pain which were included in the review. Inter-rater reliability and levels of agreement were determined using intraclass correlation coefficients (ICC). Influence of quality on pooled effect size was examined by calculating the between group standardized mean difference (SMD).

RESULTS: Inter-rater reliability indicated at least substantial levels of agreement for the USPSTF system (ICC 0.85; 95% CI 0.66, 0.94) and Downs and Black scale (ICC 0.94; 95% CI 0.84, 0.97). Overall level of agreement between tools (ICC 0.80; 95% CI 0.57, 0.92) was also good. However, the USPSTF system identified a number of studies (n = 3/20) as "poor" due to potential risks of bias. Analysis revealed substantially greater pooled effect sizes in these studies (SMD -2.51; 95% CI -4.21, -0.82) compared to those rated as "fair" (SMD -0.45; 95% CI -0.65, -0.25) or "good" (SMD -0.38; 95% CI -0.69, -0.08).

CONCLUSIONS: In this example, use of a numerical rating scale failed to identify studies at increased risk of bias, and could have potentially led to imprecise estimates of treatment effect. Although based on a small number of included studies within an existing systematic review, we found the domain based system provided a more structured framework by which qualitative decisions concerning overall quality could be made, and was useful for detecting potential sources of bias in the available evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mode I and mode II fracture properties of the FM300-2 adhesive bond between 5HS/RTM6 laminates are determined experimentally by DCB and ELS test. The crack propagation is studied numerically by means of interface elements based on the decohesive zone model. The latter is characterized by material degradation, which is usually assumed to be linear. In the present study it is shown that if a non-linear material degradation is used with an increased magnitude of the interface relative displacement at failure it is possible to model more correctly the experimentally observed significant non-linear behaviour before the start of crack propagation. An adhesive stepped flush joint is studied experimentally and numerically. A mixed mode interaction criterion is used together with the nonlinear material degradation of the interface. Sensitivity studies are performed to study the influence of the parameters defining it.