25 resultados para non-classical convolutions
Resumo:
This monograph examines a selection of Vincent Bourne's Latin verse in its classical, neo-Latin and vernacular contexts, with particular attention to the theme of identity (and differing forms of identity). Its aim is to initiate the resurrection from silence of an author whose self-fashioning is achieved by investigating the identity of the self in relation to the other and by foregrounding multiple attempts to fashion other selves.
From Back Cover of published book:
Through close and perceptive analysis of Bourne's negotiation of poetic identity, Haan argues in new ways for the blend of classicism and Romanticism informing his marginalized status. As such, the book promises to revive scholarship on Bourne, and to be of use to students and scholars of Latin as well as vernacular verse.
Carla Mazzio, Professor of English, University of Chicago.
Estelle Haan is the UK's most eminent neo-Latinist. Her books with the APS on Milton (From Academia to Amicitia, Transactions 88, part 6) and Addison (Vergilius Redivivus, Transactions 95, part 2) are both important contributions to our knowledge of those authors, and their scholarship is presented in a way that accommodates the growing number of specialists who do not read Latin. Much of the content of this study is entirely new, and it is written in a way that will make it accessible to non-Latinists. The connections with English-language poets that Professor Haan adduces page after page will be a very considerable resource for students of vernacular poetry.
Gordon Campbell, Professor of Renaissance Literature, University of Leicester.
I have long thought that a modern study of Vincent Bourne was very much needed, and am greatly pleased that one has now been written. Estelle Haan offers a thoughtful and sensitive study that has remarkable depth. She capitalizes on the familiarity with other eighteenth-century English poets about whom she has previously written (Cowper, Gray, and most recently Addison) and she makes use of contempoary literary theory without becoming dependent on any single approach or disfiguring her writing with critical jargon. This work will, one hopes, provoke further research into Bourne and his poetry.
Dana F. Sutton, Professor Emeritus of Classics, The University of California, Irvine.
Resumo:
The problems related to the management of large quantum registers could be handled in the context of distributed quantum computation: unitary non-local transformations among spatially separated local processors are realized performing local unitary transformations and exchanging classical communication. In this paper, a scheme is proposed for the implementation of universal non-local quantum gates such as a controlled NOT (CNOT) and a controlled quantum phase gate (CQPG). The system chosen for their physical implementation is a cavity-quantum-electrodynamics (CQED) system formed by two spatially separated microwave cavities and two trapped Rydberg atoms. The procedures to follow for the realization of each step necessary to perform a specific non-local operation are described.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.
Resumo:
Several methods based on an easy geometric argument are provided to prove that a given operator is not weakly supercyclic. The methods apply to different kinds of operators like composition operators or bilateral weighted shifts. In particular, it is shown that the classical Volterra operator is not weakly supercyclic on any of the LP [0, 1] spaces, 1
Resumo:
A real-time VHF swept frequency (20–300 MHz) reflectometry measurement for radio-frequency capacitive-coupled atmospheric pressure plasmas is described. The measurement is scalar, non-invasive and deployed on the main power line of the plasma chamber. The purpose of this VHF signal injection is to remotely interrogate in real-time the frequency reflection properties of plasma. The information obtained is used for remote monitoring of high-value atmospheric plasma processing. Measurements are performed under varying gas feed (helium mixed with 0–2% oxygen) and power conditions (0–40 W) on two contrasting reactors. The first is a classical parallel-plate chamber driven at 16 MHz with well-defined electrical grounding but limited optical access and the second is a cross-field plasma jet driven at 13.56 MHz with open optical access but with poor electrical shielding of the driven electrode. The electrical measurements are modelled using a lumped element electrical circuit to provide an estimate of power dissipated in the plasma as a function of gas and applied power. The performances of both reactors are evaluated against each other. The scalar measurements reveal that 0.1% oxygen admixture in helium plasma can be detected. The equivalent electrical model indicates that the current density between the parallel-plate reactor is of the order of 8–20 mA cm-2 . This value is in accord with 0.03 A cm-2 values reported by Park et al (2001 J. Appl. Phys. 89 20–8). The current density of the cross-field plasma jet electrodes is found to be 20 times higher. When the cross-field plasma jet unshielded electrode area is factored into the current density estimation, the resultant current density agrees with the parallel-plate reactor. This indicates that the unshielded reactor radiates electromagnetic energy into free space and so acts as a plasma antenna.
Resumo:
We report full-dimensionality quantum and classical calculations of double ionization (DI) of laser-driven helium at 390 nm. Good agreement is observed. We identify the relative importance of the two main non-sequential DI pathways, the direct|with an almost simultaneous ejection of both electrons|and the delayed. We find that the delayed pathway prevails at small intensities independently of total electron energy but at high intensities the direct pathway predominates up to a certain upper-limit in total energy which increases with intensity. An explanation for this increase with intensity is provided.
Resumo:
Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.
Resumo:
Coherent quantum-state manipulation of trapped ions using classical laser fields is a trademark of modern quantum technologies. In this work, we study aspects of work statistics and irreversibility in a single trapped ion due to sudden interaction with the impinging laser. This is clearly an out-of-equilibrium process where work is performed through illumination of an ion by the laser. Starting with the explicit evaluation of the first moments of the work distribution, we proceed to a careful analysis of irreversibility as quantified by the nonequilibrium lag. The treatment employed here is not restricted to the Lamb-Dicke limit, what allows us to investigate the interplay between nonlinearities and irreversibility. We show, for instance, that in the resolved carrier and sideband regimes, variation of the Lamb-Dicke parameter may cause a non-monotonic behavior of the irreversibility indicator. Counterintuitively, we find a working point where nonlinearity helps reversibility, making the sudden quench of the Hamiltonian closer to what would have been obtained quasistatically and isothermally.
Resumo:
BACKGROUND AND OBJECTIVE: The main difficulty of PCR-based clonality studies for B-cell lymphoproliferative disorders (B-LPD) is discrimination between monoclonal and polyclonal PCR products, especially when there is a high background of polyclonal B cells in the tumor sample. Actually, PCR-based methods for clonality assessment require additional analysis of the PCR products in order to discern between monoclonal and polyclonal samples. Heteroduplex analysis represents an attractive approach since it is easy to perform and avoids the use of radioactive substrates or expensive equipment. DESIGN AND METHODS: We studied the sensitivity and specificity of heteroduplex PCR analysis for monoclonal detection in samples from 90 B-cell non Hodgkin's lymphoma (B-NHL) patients and in 28 individuals without neoplastic B-cell disorders (negative controls). Furthermore, in 42 B-NHL and in the same 28 negative controls, we compared heteroduplex analysis vs the classical PCR technique. We also compared ethidium bromide (EtBr) vs. silver nitrate (AgNO(3)) staining as well as agarose vs. polyacrylamide gel electrophoresis (PAGE). RESULTS: Using two pair consensus primers sited at VH (FR3 and FR2) and at JH, 91% of B-NHL samples displayed monoclonal products after heteroduplex PCR analysis using PAGE and AgNO(3) staining. Moreover, no polyclonal sample showed a monoclonal PCR product. By contrast, false positive results were obtained when using agarose (5/28) and PAGE without heteroduplex analysis: 2/28 and 8/28 with EtBr and AgNO(3) staining, respectively. In addition, false negative results only appeared with EtBr staining: 13/42 in agarose, 4/42 in PAGE without heteroduplex analysis and 7/42 in PAGE after heteroduplex analysis. INTERPRETATION AND CONCLUSIONS: We conclude that AgNO(3) stained PAGE after heteroduplex analysis is the most suitable strategy for detecting monoclonal rearrangements in B-NHL samples because it does not produce false-positive results and the risk of false-negative results is very low.