Non-weakly supercyclic operators
Data(s) |
01/06/2007
|
---|---|
Resumo |
Several methods based on an easy geometric argument are provided to prove that a given operator is not weakly supercyclic. The methods apply to different kinds of operators like composition operators or bilateral weighted shifts. In particular, it is shown that the classical Volterra operator is not weakly supercyclic on any of the LP [0, 1] spaces, 1 |
Identificador |
http://www.scopus.com/inward/record.url?scp=37149019133&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2007 , ' Non-weakly supercyclic operators ' Journal of Operator Theory , vol 58 , no. 1 , pp. 39-62 . |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600/2602 #Algebra and Number Theory |
Tipo |
article |