48 resultados para mRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marijuana smokers and animals treated with ?9-tetrahydrocannabinol, THC, the principal component of marijuana, show alterations of sperm morphology suggesting a role for cannabinoids in sperm differentiation and/or maturation. Since the cannabinoid receptor 1 (CNR1) activation appears to play a pivotal role in spermiogenesis, the developmental stage where DNA is remodeled, we hypothesized that CNR1 receptors might also influence chromatin quality in sperm. We used Cnr1 null mutant (Cnr1-/-) mice to study the possible role of endocannabinoids on sperm chromatin during spermiogenesis. We demonstrated that CNR1 activation regulated chromatin remodeling of spermatids by either increasing Tnp2 levels or enhancing histone displacement. Comparative analysis of WT, Cnr1+/- and Cnr1-/- animals suggested the possible occurrence of haploinsufficiency for Tnp2 turnover control by CNR1, while histone displacement was disrupted to a lesser extent. Further, flow cytometry analysis demonstrated that the genetic loss of Cnr1 decreased sperm chromatin quality and was associated with sperm DNA fragmentation. This damage increased during epididymal transit, from caput to cauda. Collectively, our results show that the expression/activity of CNR1 controls the physiological alterations of DNA structure during spermiogenic maturation and epididymal transit. Given the deleterious effects of sperm DNA damage on male fertility, we suggest that the reproductive function of marijuana users may also be impaired by deregulation of the endogenous endocannabinoid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether continuous monitoring of SYBR Green I fluorescence provides a reliable and flexible method of quantitative RT-PCR. Our aims were (i) to test whether SYBR Green I analysis could quantify a wide range of known VEGF template concentrations, (ii) to apply this method in an experimental model, and (iii) to determine whether 20 existing primer pairs could be used to quantify their cognate mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ß-site AßPP cleaving enzyme 1 (BACE1) catalyses the rate-limiting step for production of amyloid-ß (Aß) peptides, involved in the pathological cascade underlying Alzheimer's disease (AD). Elevated BACE1 protein levels and activity have been reported in AD postmortem brains. Our study explored whether this was due to elevated BACE1 mRNA expression. RNA was prepared from five brain regions in three study groups: controls, individuals with AD, and another neurodegenerative disease group affected by either Parkinson's disease (PD) or dementia with Lewy bodies (DLB). BACE1 mRNA levels were measured using quantitative realtime PCR (qPCR) and analyzed by qbasePLUS using validated stably-expressed reference genes. Expression of glial and neuronal markers (glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), respectively) were also analyzed to quantify the changing activities of these cell populations in the tissue. BACE1 mRNA levels were significantly elevated in medial temporal and superior parietal gyri, compared to the PD/DLB and/or control groups. Superior frontal gryus BACE1 mRNA levels were significantly increased in the PD/DLB group, compared to AD and control groups. For the AD group, BACE1 mRNA changes were analyzed in the context of the reduced NSE mRNA, and strongly increased GFAP mRNA levels apparent as AD progressed (indicated by Braak stage). This analysis suggested that increased BACE1 mRNA expression in remaining neuronal cells may contribute to the increased BACE1 protein levels and activity found in brain regions affected by AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5' cap structures of higher eukaryote mRNAs have ribose 2'-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2'-O-methylation of mRNA remains elusive. Here we show that 2'-O-methylation of viral mRNA was critically involved in subverting the induction of type I interferon. We demonstrate that human and mouse coronavirus mutants lacking 2'-O-methyltransferase activity induced higher expression of type I interferon and were highly sensitive to type I interferon. Notably, the induction of type I interferon by viruses deficient in 2'-O-methyltransferase was dependent on the cytoplasmic RNA sensor Mda5. This link between Mda5-mediated sensing of viral RNA and 2'-O-methylation of mRNA suggests that RNA modifications such as 2'-O-methylation provide a molecular signature for the discrimination of self and non-self mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.