53 resultados para low flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of the coccidiostat nicarbazin as low as 2 mg/kg in feed can result in violative drug residues arising in poultry liver. A lateral flow device (LFD) was developed for the detection of contaminating concentrations of nicarbazin following solvent extraction of poultry feeds. Test results, as determined by both visual and instrumental measurement, are available within minutes. For 22 feed samples, nicarbazin-free and fortified at 2 mg/kg, the % relative inhibition ranged from 0 to 45% and from 53 to 85%, respectively. Nicarbazin contamination at the critical concentration (2 mg/kg) can be determined in all cases providing the sampling is representative. A wide range of feed samples taken at a mill that incorporated nicarbazin into poultry feed were analyzed. Data generated for these samples by both the LFDs and a mass spectrometric method were compared, and a significant correlation was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydroformylation of 1-octene under continuous flow conditions is described. The system involves dissolving the catalyst, made in situ from [ Rh(acac)(CO)(2)] (acacH = 2,4- pentanedione) and [RMIM][TPPMS] ( RMIM = 1-propyl (Pr), 1-pentyl (Pn) or 1-octyl (O)-3-methyl imidazolium, TPPMS = Ph2P(3-C6H4SO3)), in a mixture of nonanal and 1-octene and passing the substrate, 1-octene, together with CO and H-2 through the system dissolved in supercritical CO2 (scCO(2)). [PrMIM][TPPMS] is poorly soluble in the medium so heavy rhodium leaching (as complexes not containing phosphine) occurs in the early part of the reaction. [PnMIM][ PPMS] affords good rates at relatively low catalyst loadings and relatively low overall pressure (125 bar) with rhodium losses <1 ppm, but the catalyst precipitates at higher catalyst loadings, leading to lower reaction rates. [OMIM][ TPPMS] is the most soluble ligand and promotes high reaction rates, although preliminary experiments suggested that rhodium leaching was high at 5-10 ppm. Optimisation aimed at balancing flows so that the level within the reactor remained constant involved a reactor set up based around a reactor fitted with a sight glass and sparging stirrer with the CO2 being fed by a cooled head HPLC pump, 1-octene by a standard HPLC pump and CO/H-2 through a mass flow controller. The pressure was controlled by a back pressure regulator. Using this set up, [OMIM][ TPPMS] as the ligand and a total pressure of 140 bar, it was possible to control the level within the reactor and obtain a turnover frequency of ca. 180 h(-1). Rhodium losses in the optimised system were 100 ppb. Transport studies showed that 1-octene is preferentially transported over the aldehydes at all pressures, although the difference in mol fraction in the mobile phase was less at lower pressures. Nonanal in the mobile phase suppresses the extraction of 1-octene to some extent, so it is better to operate at high conversion and low pressure to optimise the extraction of the products relative to the substrate. CO and H2 in the mobile phase also suppress the extraction effciency by as much as 80%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel type of submicron ion radiography designed to image low-contrast objects, including nanofoils, membranes and biological structures, is proposed. It is based on femtosecond-laser-driven-cluster- plasma source of multicharged ions and polymer dosimeter film CR-39. The intense isotropic ion flow was produced by femtosecond Ti:Sa laser pulses with intensity similar to 4x10(17) W/cm(2) absorbed in the supersonic jet of the mixed He and CO2 gases. Two Focusing Spectrometers with Spatial Resolution (FSSR) were used to measure X-ray spectra of H-and He-like multicharged oxygen ions. The spectra testify that ions with energy more than 300 keV were radiated in different directions from the plasma source. High contrast ion radiography images were obtained for 2000 dpi metal mesh, 1 mu m polypropylene and 100 nm Zr foils as well as for the different biological objects. Images were recorded on a 1 mm thick CR-39 detector, placed in contact with back surface of the imaged samples at the distances 140 -160 mm from the ion source. The spatial resolution of the image no worse than 600 nm was provided. A difference in object thickness of 100 nm was very well resolved for both Zr and polymer foils. The ion radiography images recorded at different angles from the source, demonstrated almost uniform spatial distribution of ion with total number of 10(8) per shot. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship’s propeller. The flow characteristics of a ship’s propeller jet are of particular interest for the researchers investigating the jet induced seabed damage as documented in the previous studies. Laser Doppler Anemometry (LDA) measurements show that the axial component of velocity is the main contributor to the velocity magnitude at the initial plane of a ship’s propeller jet. The tangential component contributes to the rotation while the radial component which contributes to the diffusion, are the second and third largest contributors to the velocity magnitude. The maximum tangential and radial velocity components at the initial plane are approximately 82% and 14% of the maximum axial velocity component, respectively. The axial velocity distribution at the initial plane shows two peaked ridges with a low velocity core at the rotation axis. The turbulence intensity distribution shows a three-peaked profile at the initial plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a procedure based on spatially-resolved near-infrared imaging, in order to observe temperature and composition maps in gas-solid packed beds subjected to effects of aspect ratio and non-isothermal conditions. The technique was applied to the water vapour flow in a packed bed adsorber of low aspect ratio, filled with silica gel, using a tuneable diode laser, focal planar array detector and tomographic reconstruction. The 2D projected images from parallel scanning permitted data to be retrieved from the packing and above the packing sections of 12.0×12.0×18.2mm at a volume-resolution of 0.15×0.15×0.026mm and a time-resolution of less than 3min. The technique revealed uneven temperature and composition maps in the core packed bed and in the vicinity of the wall due to flow maldistribution. In addition, the heat uptake from the packed bed and local cross-mixing were experimentally ascertained by local profiles of the water vapour composition and temperature under various aspect ratios and feed flow rates. The relative deviations in temperature and compositions were 11.1% and 9.3%, respectively. The deviation in composition, which covers the packing and above the packing sections, was slightly higher than the deviation of 8% obtained up-to-date but was limited to the exit of a packed bed adsorber. © 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic computational fluid dynamics (CFD) approach has been applied to design the geometry of the channels of a three-dimensional (thick-walled) screen comprising upstream and downstream sets of elongated channels positioned at an angle of 90 degrees with respect to each other. Such a geometry of the thick-wall screen can effectively drop the ratio of the maximum flow velocity to mean flow velocity below 1.005 in a downstream microstructured reactor at low Reynolds numbers. In this approach the problem of flow equalization reduces to that of flow equalization in the first and second downstream channels of the thick-walled screen. In turn, this requires flow equalization in the corresponding cross-sections of the upstream channels. The validity of the proposed design method was assessed through a case study. The effect of different design parameters on the flow non-uniformity in the downstream channels has been established. The design equation is proposed to calculate the optimum values of the screen parameters. The CFD results on flow distribution were experimentally validated by Laser Doppler Anemometry measurements in the range of Reynolds numbers from 6 to 113. The measured flow non-uniformity in the separate reactor channels was below 2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6] - a room temperature ionic liquid - are reported as a function of temperature between 283 and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble and hydrogen is the least soluble of the gases studied with mole fraction solubilities of the order of 10-2 and 10-4, respectively. All the mole fraction solubilities decrease with temperature except for hydrogen for which a maximum is observed at temperatures close to 310 K. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study an experimental investigation of the time-averaged velocity and turbulence intensity distributions from a ship’s propeller, in “bollard pull” condition (zero speed of advance), is reported. Previous studies have focused mainly on the velocity profile of not a rotating ship propeller but a plain jet. The velocity profile of a propeller is investigated experimentally in this study.
The velocity measurements were performed in laboratory by using a Laser Doppler Anemometry (LDA). The measurements demonstrated two-peaked ridges velocity profile with a low velocity core at the centre within the near wake. The two-peaked ridges combined to be one-peaked ridge at 3.68 diameters downstream indicating the end of the zone of flow establishment. The study
provides useful information from a rotating ship’s propeller rather than a simplified plain jet to researchers investigating flow velocity generated from a propeller and probably resulting local scouring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The effects of equipotent doses of frusemide (10 mg and 100 mg) and bumetanide (250 micrograms and 2.5 mg) upon renal and peripheral vascular responses, urinary prostaglandin excretion, plasma renin activity, angiotensin II and noradrenaline were compared in nine healthy volunteers. 2. Frusemide (10 mg and 100 mg) and bumetanide (2.5 mg) increased renal blood flow acutely compared with placebo but bumetanide (250 micrograms) had no effect. The changes in peripheral vascular responses were not significantly different from placebo. 3. Urinary prostaglandin metabolite excretion was acutely increased by all treatments, with no inter-treatment difference. Plasma renin activity was increased acutely by both doses of frusemide and by bumetanide (2.5 mg) compared with placebo and to bumetanide (250 micrograms). There were no differences between the latter two treatments. Angiotensin II was increased significantly 30 min after frusemide 100 mg and bumetanide 2.5 mg, and by all four treatments at 50 min when compared with placebo. There were no significant differences between either of the low doses or the higher doses. Plasma noradrenaline was unchanged by all treatments. 4. Frusemide 100 mg and bumetanide 2.5 mg have the same effects on the renal vasculature and the renin-angiotensin-prostaglandin system. Under the conditions of this study, frusemide 10 mg had different effects on plasma renin activity than bumetanide 250 micrograms.