23 resultados para laser direct write


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison is presented of the temporally resolved resonance-line emission from the Ne-like Ge XUV laser (pumped with nanosecond pulses) with the predictions for the same emission from the hydro-atomic code EHYBRID. The specific lines chosen were the two 3s-2p Ne-like lines at 10.01 and 9.762 Angstrom, and the 3s-2p F-like group of lines in the 9.4-9.6 Angstrom region. Modification of the code to include 112 excited levels of the F-like ion facilitated a direct comparison between experiment and model of (i) the temporal variation of the emissions and (ii) the variation of the peak intensity ratios of the F-like to Ne-like emissions with irradiance on target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach to spectroscopy of laser induced proton beams using radiochromic film (RCF) is presented. This approach allows primary standards of absorbed dose-to-water as used in radiotherapy to be transferred to the calibration of GafChromic HD-810 and EBT in a 29 MeV proton beam from the Birmingham cyclotron. These films were then irradiated in a common stack configuration using the TARANIS Nd:Glass multi-terawatt laser at Queens University Belfast, which can accelerate protons to 10-12 MeV, and a depth-dose curve was measured from a collimated beam. Previous work characterizing the relative effectiveness (RE) of GafChromic film as a function of energy was implemented into Monte Carlo depth-dose curves using FLUKA. A Bragg peak (BP) "library" for proton energies 0-15 MeV was generated, both with and without the RE function. These depth-response curves were iteratively summed in a FORTRAN routine to solve for the measured RCF depth-dose using a simple direct search algorithm. By comparing resultant spectra with both BP libraries, it was found that the effect of including the RE function accounted for an increase in the total number of protons by about 50%. To account for the energy loss due to a 20 mu m aluminum filter in front of the film stack, FLUKA was used to create a matrix containing the energy loss transformations for each individual energy bin. Multiplication by the pseudo-inverse of this matrix resulted in "up-shifting" protons to higher energies. Applying this correction to two laser shots gave further increases in the total number of protons, N of 31% and 56%. Failure to consider the relative response of RCF to lower proton energies and neglecting energy losses in a stack filter foil can potentially lead to significant underestimates of the total number of protons in RCF spectroscopy of the low energy protons produced by laser ablation of thin targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface plasmon enhancement of laser ablation of thin Al films is examined with a view to its application in metal film patterning and nano-structuring. Al films, deposited on silica prisms, are first characterized by attenuated total reflection using a broadband UV source and appropriate interference filter. The films are subsequently subjected to excimer laser radiation of wavelength 248 nm under conditions both of direct incidence from the air side of the film, and of surface plasmon excitation in which light is incident through the prism at greater than critical angle. For a given level of ablation damage in a particular film the fluence required using the surface plasmon technique is 3-5 times less than that needed when direct incidence is used. This is roughly in line with the energy absorbed in the film. From a practical standpoint it is clear that ablation of metal films can be achieved with much lower fluences than has hitherto been possible, thus reducing the requirements on laser output and relaxing the power handling constraints on any input optical elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-order harmonics and attosecond pulses of light can be generated when ultraintense, ultrashort laser pulses reflect off a solid-density plasma with a sharp vacuum interface, i.e., a plasma mirror. We demonstrate experimentally the key influence of the steepness of the plasma-vacuum interface on the interaction, by measuring the spectral and spatial properties of harmonics generated on a plasma mirror whose initial density gradient scale length L is continuously varied. Time-resolved interferometry is used to separately measure this scale length. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of bismuth oxide films prepared by pulsed laser deposition (PLD), absorption in the photon energy range 2.50-4.30 eV and optical functions (n, k, epsilon(1), and epsilon(2)) in the domain 3.20-6.50 eV, have been investigated. As-prepared films (d = 0.05-1.50 mum) are characterized by a mixture of polycrystalline and amorphous phases. The fundamental absorption edge is described by direct optical band-to-band transitions with energies 2.90 and 3.83 eV The dispersion of the optical functions provided values of 4.40-6.25 eV for electron energies of respective direct transitions. In the spectral range 400-1000 nm, bismuth oxide films show a normal dispersion, which can be interpreted in the frame of a single oscillator model. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunches from which emission takes place each half-cycle of the driving laser pulse. These emissions are separated temporally by 130 attoseconds and are dominant in different frequency ranges, which is a direct consequence of the distinct characteristics of each electron nanobunch. This may be exploited through spectral filtering to isolate these emissions, generating electromagnetic pulses of duration ~70 as.