35 resultados para information structure
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.
Resumo:
Fuzzy-neural-network-based inference systems are well-known universal approximators which can produce linguistically interpretable results. Unfortunately, their dimensionality can be extremely high due to an excessive number of inputs and rules, which raises the need for overall structure optimization. In the literature, various input selection methods are available, but they are applied separately from rule selection, often without considering the fuzzy structure. This paper proposes an integrated framework to optimize the number of inputs and the number of rules simultaneously. First, a method is developed to select the most significant rules, along with a refinement stage to remove unnecessary correlations. An improved information criterion is then proposed to find an appropriate number of inputs and rules to include in the model, leading to a balanced tradeoff between interpretability and accuracy. Simulation results confirm the efficacy of the proposed method.
Resumo:
We investigate the relationship between information disclosure and depositor behaviour in the Chinese banking sector. Specifically, we enquire whether enhanced information disclosure enables investors to more effectively infer a banking institution's risk profile, thereby influencing their deposit decisions. Utilising an unbalanced panel, incorporating financial data from 169 Chinese banks over the 1998–2009 period, we employ generalised-method-of-moments (GMM) estimation procedures to control for potential endogeneity, unobserved heterogeneity, and persistence in the dependent variable. We uncover evidence that: (i) the growth rate of deposits is sensitive to bank fundamentals after controlling for macroeconomic factors, diversity in ownership structure, and government intervention; (ii) a bank publicly disclosing more transparent information in its financial reports, is more likely to experience growth in its deposit base; and (iii) banks characterised by high information transparency, well-capitalised and adopted international accounting standards, are more able to attract funds by offering higher interest rates.
Resumo:
When multiple sources provide information about the same unknown quantity, their fusion into a synthetic interpretable message is often a tedious problem, especially when sources are conicting. In this paper, we propose to use possibility theory and the notion of maximal coherent subsets, often used in logic-based representations, to build a fuzzy belief structure that will be instrumental both for extracting useful information about various features of the information conveyed by the sources and for compressing this information into a unique possibility distribution. Extensions and properties of the basic fusion rule are also studied.
Resumo:
We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function-to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in 'functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may be extended to each level of organisation up to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical structure is the way the information is embodied. This idea supports the seamless integration of life at all scales with the physical universe. The innovation reported here is essentially to integrate these ideas, basing information on the 'general definition' of information, rather than simply the statistics of information, thereby explaining how functional information operates throughout life. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is 0.65(2) mu(B) at 10 K and is in very good agreement with the value, mu(sat) = 0.65(1) mu(B) at 10 K, inferred from the magnetic hysteresis curve. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored.
Results: We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes.
Conclusions: Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes.
Resumo:
The Wellcome Trust Case Control Consortium 3 anorexia nervosa genome-wide association scan includes 2907 cases from 15 different populations of European origin genotyped on the Illumina 670K chip. We compared methods for identifying population stratification, and suggest list of markers that may help to counter this problem. It is usual to identify population structure in such studies using only common variants with minor allele frequency (MAF) >5%; we find that this may result in highly informative SNPs being discarded, and suggest that instead all SNPs with MAF >1% may be used. We established informative axes of variation identified via principal component analysis and highlight important features of the genetic structure of diverse European-descent populations, some studied for the first time at this scale. Finally, we investigated the substructure within each of these 15 populations and identified SNPs that help capture hidden stratification. This work can provide information regarding the designing and interpretation of association results in the International Consortia.
Resumo:
Traditionally, audio-motor timing processes have been understood as motor output from an internal clock, the speed of which is set by heard sound pulses. In contrast, this paper proposes a more ecologically-grounded approach, arguing that audio-motor processes are better characterized as performed actions on the perceived structure of auditory events. This position is explored in the context of auditory sensorimotor synchronization and continuation timing. Empirical research shows that the structure of sounds as auditory events can lead to marked differences in movement timing performance. The nature of these effects is discussed in the context of perceived action-relevance of auditory event structure. It is proposed that different forms of sound invite or support different patterns of sensorimotor timing. Hence, the temporal information in looped auditory signals is more than just the interval durations between onsets: all metronomes are not created equal. The potential implications for auditory guides in motor performance enhancement are also described.
Resumo:
This paper addresses the problem of learning Bayesian network structures from data based on score functions that are decomposable. It describes properties that strongly reduce the time and memory costs of many known methods without losing global optimality guarantees. These properties are derived for different score criteria such as Minimum Description Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates structural constraints with data in a way to guarantee global optimality. As an example, structural constraints are used to map the problem of structure learning in Dynamic Bayesian networks into a corresponding augmented Bayesian network. Finally, we show empirically the benefits of using the properties with state-of-the-art methods and with the new algorithm, which is able to handle larger data sets than before.
Resumo:
UNLABELLED: Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homologues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and available for complexation with binding partners, including GGDEF proteins.
IMPORTANCE: It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of processes, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by the analysis of several crystal structures, but no information has been available to date for the unrelated HD-GYP class of hydrolases. Here we present the multidomain structure of an unusual member of the HD-GYP family from the predatory bacterium Bdellovibrio bacteriovorus and detail the features that distinguish it from the wider structural family of general HD fold hydrolases. The structure reveals how a binuclear iron center is formed from several conserved residues and provides a basis for understanding HD-GYP family sequence requirements for c-di-GMP hydrolysis.
Resumo:
Children aged between 5 and 8 years freely intervened on a three-variable causal system, with their task being to discover whether it was a common-cause structure or one of two causal chains. From 6-7 years, children were able to use information from their interventions to correctly disambiguate the structure of a causal chain. We used a Bayesian model to examine children’s interventions on the system; this showed that with development children became more efficient in producing the interventions needed to disambiguate the causal structure and that the quality of interventions, as measured by their informativeness, improved developmentally. The latter measure was a significant predictor of children’s correct inferences about the causal structure. A second experiment showed that levels of performance were not reduced in a task in which children did not select and carry out interventions themselves, indicating no advantage for self-directed learning. However, children’s performance was not related to intervention quality in these circumstances, suggesting that children learn in a different way when they carry out interventions themselves.
Resumo:
Changes in the economic climate and the delivery of health care require that pre-operative information programmes are effective and efficiently implemented. In order to be effective the pre-operative programme must meet the information needs of intensive care unit (ICU) patients and their relatives. Efficiency can be achieved through a structured pre-operative programme which provides a framework for teaching. The need to develop an ICU information booklet in a large teaching hospital in Northern Ireland has become essential to provide relevant information and improve the quality of service for patients and relatives, as set out in the White Paper, ‘Working for Patients’, (DoH, 1989). The first step in establishing a patient education programme was to ascertain patients' and relatives' informational needs. A ‘needs assessment’ identified the pre-operative information needs of ICU patients and their relatives (McGaughey, 1994) and the findings were used to plan and publish an information booklet. The ICU booklet provides a structure for pre-operative visits to ensure that patients and relatives information needs are met.
Resumo:
Building Information Modelling (BIM) is continuing to evolve and develop as the construction industry progresses towards level 2 maturity. However, one of the core barriers in this progression is the aspect of interoperability between software packages. This research and paper stems from a Knowledge Transfer Partnership (KTP) where both industry and academia come together to address this shortcoming within the sector. One of the core objectives of this partnership and the aim of this study is investigating potential solutions to this barrier, while also developing best working practices to be applied in industry. Using one of the case studies from this partnership (a temporary steel structure), this paper demonstrates a potential solution to addressing interoperability within structural analysis and detailing packages, MasterSeries and Revit respectively. The findings of the research indicate that a process based approach rather than that of additional software coding as being the preferred solution. The results of this preliminary research will aid in the development of the topic of interoperability within the sector, while also developing the knowledge and competencies of the parties within the KTP. The findings are explored further, by providing an overview of the resolution process adopted in this case study, in overcoming the interoperability that arose as the project progressed. It is envisaged that this study will assist the construction sector and its adoption of BIM technologies, while also addressing the critical aspect of operability between software.