50 resultados para heated cavity
Resumo:
This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.
Resumo:
Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
It is shown that structuring the top layers of a resonant cavity Schottky photodetector in a way that allows coupling between the wavevector of incident radiation and that of electron-collective oscillations (plasmons) at the surface of the metallic electrode leads to practically zero reflectance in the case of front illuminated devices. This is expected to result in a consequential enhancement in the quantum efficiency in these photodetectors. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Biochemical studies reveal that a conserved arginine residue (R37) at the centre of the 14 angstrom internal cavity of histone deacetylase (HDAC) 8 is important for catalysis and acetate affinity. Computational studies indicate that R37 forms multiple hydrogen bonding interactions with the backbone carbonyl oxygen atoms of two conserved glycine residues, G303 and G305, resulting in a 'closed' form of the channel. One possible rationale for these data is that water or product (acetate) transit through the catalytically crucial internal channel of HDAC8 is regulated by a gating interaction between G139 and G303 tethered in position by the conserved R37. (C) 2011 Elsevier Ltd. All rights reserved.