68 resultados para genetic variants
Resumo:
Aims/hypothesis: Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. Methods: We exploited a novel algorithm, ‘Bag of Naive Bayes’, whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK–Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). Results: Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case–control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p < 0.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. Conclusions/interpretation: This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.
Resumo:
PURPOSE: New onset diabetes after transplantation (NODAT) is a serious complication following solid organ transplantation. There is a genetic contribution to NODAT and we have conducted comprehensive meta-analysis of available genetic data in kidney transplant populations.
METHODS: Relevant articles investigating the association between genetic markers and NODAT were identified by searching PubMed, Web of Science and Google Scholar. SNPs described in a minimum of three studies were included for analysis using a random effects model. The association between identified variants and NODAT was calculated at the per-study level to generate overall significance values and effect sizes.
RESULTS: Searching the literature returned 4,147 citations. Within the 36 eligible articles identified, 18 genetic variants from 12 genes were considered for analysis. Of these, three were significantly associated with NODAT by meta-analysis at the 5% level of significance; CDKAL1 rs10946398 p = 0.006 OR = 1.43, 95% CI = 1.11-1.85 (n = 696 individuals), KCNQ1 rs2237892 p = 0.007 OR = 1.43, 95% CI = 1.10-1.86 (n = 1,270 individuals), and TCF7L2 rs7903146 p = 0.01 OR = 1.41, 95% CI = 1.07-1.85 (n = 2,967 individuals).
CONCLUSION: Evaluating cumulative evidence for SNPs associated with NODAT in kidney transplant recipients has revealed three SNPs associated with NODAT. An adequately powered, dense genome-wide association study will provide more information using a carefully defined NODAT phenotype.
Resumo:
Purpose: To investigate how potentially functional genetic variants are coinherited on each of four common complement factor H (CFH) and CFH-related gene haplotypes and to measure expression of these genes in eye and liver tissues.
Methods: We sequenced the CFH region in four individuals (one homozygote for each of four common CFH region haplotypes) to identify all genetic variants. We studied associations between the haplotypes and AMD phenotypes in 2157 cases and 1150 controls. We examined RNA-seq profiles in macular and peripheral retina and retinal pigment epithelium/choroid/sclera (RCS) from eight eye donors and three liver samples.
Results: The haplotypic coinheritance of potentially functional variants (including missense variants, novel splice sites, and the CFHR3–CFHR1 deletion) was described for the four common haplotypes. Expression of the short and long CFH transcripts differed markedly between the retina and liver. We found no expression of any of the five CFH-related genes in the retina or RCS, in contrast to the liver, which is the main source of the circulating proteins.
Conclusions: We identified all genetic variants on common CFH region haplotypes and described their coinheritance. Understanding their functional effects will be key to developing and stratifying AMD therapies. The small scale of our expression study prevented us from investigating the relationships between CFH region haplotypes and their expression, and it will take time and collaboration to develop epidemiologic-scale studies. However, the striking difference between systemic and ocular expression of complement regulators shown in this study suggests important implications for the development of intraocular and systemic treatments.
Resumo:
Diabetes is the leading cause of end stage renal disease. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2,843 subjects, we estimated that the heritability of diabetic kidney disease was 35% ( p=6x10-3 ). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index ( p=2.2×10-5) and the risk of type 2 diabetes (p=6.1x10-4 ) were associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation ( p=1.1×10-4 ). Pathway analysis implicated ascorbate and aldarate metabolism ( p=9×10-6), and pentose and glucuronate interconversions ( p=3×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Resumo:
This chapter reviews genetic studies that have aimed to identify genes influencing psychological traits in infancy (from birth to age 12 months), and considers how this research informs us about the causes of developmental psychopathology. Specifically, this chapter systematically reviews findings from studies that associated common genetic variants with individual variation in infants’ attention, temperament and behaviour, and attachment disorganisation. DRD4 and 5-HTTLPR genes were the most frequently studied candidate genes. Possibly the most coherent set of results relates to the L-DRD4 genotype, which is significantly associated with infant attention, temperament, and attachment style. Research in infant genetics has been strengthened by a careful focus on uniform age ranges within studies, by several longitudinal studies, and by exploration of gene-environment interactions between genes and maternal characteristics. However there is also considerable inconsistency in results in this field and possible reasons for this are discussed. The chapter outlines the main genetic methods that have been used and what new genetic approaches such as polygenic risk scoring could offer infant genetics. Recent findings suggest that some traits during infancy predict individual differences in developmental psychopathology in childhood. It is argued that infant genetic research has considerable potential for the identification of populations at risk for psychopathology in later life, and this remains an area open for future research.
Resumo:
OBJECTIVES: Behavioural and psychological symptoms of dementia (BPSD) are potent predictors of carer distress and admission to institutional care. In Alzheimer's disease (AD), depressive symptoms are one of the most common complaints affecting around 50% of all patients. There is speculation these symptoms result from known genetic risk factors for AD, therefore we investigated the role of apolipoprotein E epsilon4 in the aetiology of depression in AD. METHODS: In this well-characterised cohort (n = 404) from the relatively genetically homogeneous Northern Ireland population, we tested the hypothesis that genetic variants of apolipoprotein E influence the risk for depressive symptoms in AD patients using the Neuropsychiatric Inventory (NPI-D) to determine the presence of depressive symptoms during the dementing illness. RESULTS: A total of 55% of patients exhibited a history of depression/dysphoria during the course of the illness as gathered by the NPI-D questionnaire. Forty-six percent were suffering from depression/dysphoria when the analysis was restricted to the month prior to interview. No statistically significant association between genotypes or alleles of apolipoprotein E and depression/dysphoria in AD was observed, nor was any association noted between the presence of severe symptoms and genotypes/alleles of apolipoprotein E. CONCLUSIONS: These results suggest apolipoprotein E genotype creates no additional risk for depressive symptoms in AD.
Resumo:
Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Molecular studies support pharmacological evidence that phosphoinositide signaling is perturbed in schizophrenia and bipolar disorder. The phosphatidylinositol-4-phosphate-5-kinase type-II alpha (PIP4K2A) gene is located on chromosome 10p12. This region has been implicated in both diseases by linkage, and PIP4K2A directly by association. Given linkage evidence in the Irish Study of High Density Schizophrenia Families (ISHDSF) to a region including 10p12, we performed an association study between genetic variants at PIP4K2A and disease. No association was detected through single-marker or haplotype analysis of the whole sample. However, stratification into families positive and negative for the ISHDSF schizophrenia high-risk haplotype (HRH) in the DTNBP1 gene and re-analysis for linkage showed reduced amplitude of the 10p12 linkage peak in the DTNBP1 HRH positive families. Association analysis of the stratified sample showed a trend toward association of PIP4K2A SNPs rs1417374 and rs1409395 with schizophrenia in the DTNBP1 HRH positive families. Despite this apparent paradox, our data may therefore suggest involvement of PIP4K2A in schizophrenia in those families for whom genetic variation in DTNBP1 appears also to be a risk factor. This trend appears to arise from under-transmission of common alleles to female cases. Follow-up association analysis in a large Irish schizophrenia case-control control sample (ICCSS) showed significant association with disease of a haplotype comprising these same SNPs rs1417374-rs1409395, again more so in affected females, and in cases with negative family history of the disease. This study supports a minor role for PIP4K2A in schizophrenia etiology in the Irish population. (C) 2009 Wiley-Liss, Inc.
Resumo:
Mitochondrial dysfunction has been proposed to play a role in the pathogenesis of Parkinson s disease (PD) Supportive of this hypothesis several genetic variants that regulate mitochondrial function and homeostasis have been described to alter PD susceptibility A recent report demonstrated association of a single nucleotide polymorphism in the mitochondrial translation initiation factor 3 (MTIF3) gene with PD risk The protein encoded by this nuclear gene is essential for initiation complex formation on the mitochondrial 55S ribosome and regulates translation of proteins within the mitochondria Changes in the function or expression of the MTIF3 protein may result in altered mitochondrial function ATP production or formation of reactive oxygen species thereby affecting susceptibility to PD We examined the association of rs7669 with sporadic PD in three Caucasian case control series (n = 2434) A significant association was observed in the largest series (Norwegian n = 1650) when comparing CC vs CT/TT genotypes with the Irish and US series having a similar but non-significant trend The combined series also revealed an association with risk of PD (P = 0 01) supporting the possible involvement of this gene in PD etiology Published by Elsevier Ireland Ltd
Resumo:
Substantial progress has been made in identifying genetic loci associated with multifactorial disorders, including variants that seem to impact outcomes following solid organ transplantation. Despite these advances, much of the heritability and susceptibility to chronic disease processes remains unexplained. Epigenetic modifications may exert their effect independently or complementary to genetic variants. Epigenetic modifications can change gene expression without altering the DNA sequence. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. The impact of epigenetic phenomena on the outcomes of organ transplantation is currently poorly understood. Epigenetic modifications can occur during periods of illness; these may persist and potentially influence allograft outcomes. Epigenetic mechanisms influence the activation, proliferation, and differentiation of the immune cells involved in allograft rejection. The donor's epigenome may also impact transplant survival, and initial research has demonstrated that peritransplant conditions induce rapid epigenetic modification within the allograft. Further research will help to define the importance of epigenetic modifications in transplantation. This will potentially lead to the identification of useful biomarkers and the development of novel pharmacotherapies. This review explores the nature of epigenetic modification in disease and the emerging evidence for epigenetic influences on allograft survival.
Resumo:
Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study.
Resumo:
We read with interest the comments offered by Drs. Hughes and Bradley (1) on our systematic review (2). Four single nucleotide polymorphisms (SNPs), rs9332739 and rs547154 in the complement component 2 gene (C2) and rs4151667 and rs641153 in the complement factor B gene (CFB), were pooled. Hughes and Bradley point out that we omitted the most common variant, rs12614. In fact, rs12614 is in high linkage disequilibrium (LD) with rs641153, which was included, and the major allele of both of these SNPs is in the range of 90% (population code, CEU, in the International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/)). Moreover, our review was initiated in September 2010, at which point only 4 studies had published associations with rs12614, whereas 14 studies (n = 11,378) were available for rs641153. While it is true that both SNPs are better analyzed as a haplotype, these data were simply not available for pooling.
Hughes and Bradley also point out that we obtained and pooled new data that were not previously published. While it is recommended that contact with authors be completed as part of a comprehensive meta-analysis, we acknowledge that these additional data were not previously published and peer reviewed and, hence, do not have the same level of transparency. However, given that sample collections often increase over time and that the instrumentation for genotyping is continually improving, we thought that it would be advantageous to use the most recent information; this is a subjective decision.
We also agree that the allele frequencies given by Kaur et al. (3) were exactly opposite to those expected and were suggestive of strand flipping. However, we specifically queried this with the lead author on 2 separate occasions and were assured it was not.
Hughes and Bradley do make an interesting suggestion that SNPs in high LD should be used as a gauge of genotyping quality in HuGE reviews. This is an interesting idea but difficult to put into practice as the r2 parameter they propose as a measure of LD has some unusual properties. Although r2 is a measure of LD, it is also linked to the allele frequency; even small differences in allele frequencies between 2 linked SNPs can reduce the r2 dramatically. Wray (4) explored these effects and found that, at a baseline allele frequency of 10%, even a difference in allele frequency between 2 SNPs as small as 2% can drop the r2 value below 0.8. This degree of allele frequency difference is consistent with what could be expected for sampling error. Furthermore, when we look at 2 linked dialleleic SNPs, giving 4 possible haplotypes, the absence of 1 haplotype dramatically reduces r2, despite the 2 loci being in high LD as measured by D'. In fact, this is the situation for rs12614 and rs641153, where the low frequency of 1 haplotype means that the r2 is 0.01 but the D' is 1.
Hughes and Bradley also suggest consideration of genotype call rate restrictions as an inclusion criterion for metaanalysis. This would be more appropriate when focusing on genetic variants per se, as considered within the context of a genome-wide association study or other specific genetic analysis where large numbers of SNPs are evaluated (5).
The concerns raised by Hughes and Bradley reflect the limited ability of a meta-analysis based on summary data to tease out inconsistencies best identified at the individual level. We agree that SNPs in LD should be evaluated, but this will not necessarily be straightforward. A move to make genetic data sets publicly available, as in the Database of Genotypes and Phenotypes (http://www.ncbi.nlm.nih.gov/ gap), is a step in the right direction for greater transparency.
Resumo:
Neonatal pain-related stress is associated with elevated salivary cortisol levels to age 18 months in children born very preterm, compared to full-term, suggesting early programming effects. Importantly, interactions between immune/inflammatory and neuroendocrine systems may underlie programming effects. We examined whether cortisol changes persist to school age, and if common genetic variants in the promoter region of the NFKBIA gene involved in regulation of immune and inflammatory responses, modify the association between early experience and later life stress as indexed by hair cortisol levels, which provide an integrated index of endogenous HPA axis activity. Cortisol was assayed in hair samples from 128 children (83 born preterm =32 weeks gestation and 45 born full-term) without major sensory, motor or cognitive impairments at age 7 years. We found that hair cortisol levels were lower in preterm compared to term-born children. Downregulation of the HPA axis in preterm children without major impairment, seen years after neonatal stress terminated, suggests persistent alteration of stress system programming. Importantly, the etiology was gender-specific such that in preterm boys but not girls, specifically those with the minor allele for NFKBIA rs2233409, lower hair cortisol was associated with greater neonatal pain (number of skin-breaking procedures from birth to term), independent of medical confounders. Moreover, the minor allele (CT or TT) of NFKBIA rs2233409 was associated with higher secretion of inflammatory cytokines, supporting the hypothesis that neonatal pain-related stress may act as a proinflammatory stimulus that induces long-term immune cell activation. These findings are the first evidence that a long-term association between early pain-related stress and cortisol may be mediated by a genetic variants that regulate the activity of NF-?B, suggesting possible involvement of stress/inflammatory mechanisms in HPA programming in boys born very preterm. © 2013 Grunau et al.
Resumo:
Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.
Resumo:
Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).