34 resultados para digital technology
Resumo:
At the outset of a discussion of evaluating digital musical instruments, that is to say instruments whose sound generators are digital and separable though not necessarily separate from their control interfaces (Malloch, 2006), it is reasonable to ask what the term evaluation in this context really means. After all, there may be many perspectives from which to view the effectiveness or otherwise of the instruments we build. For most performers, performance on an instrument becomes a means of evaluating how well it functions in the context of live music making, and their measure of success is the response of the audience to their performance. Audiences evaluate performances on the basis of how engaged they feel they have been by what they have seen and heard. When questioned, they are likely to describe good performances as “exciting,” “skillful,” “musical.” Bad performances are “boring,” and those which are marred by technical malfunction are often dismissed out of hand. If performance is considered to be a valid means of evaluating a musical instrument, then it follows that, for the field of DMI design, a much broader definition of the term “evaluation” than that typically used in human-computer interaction (HCI) is required to reflect the fact that there are a number of stakeholders involved in the design and evaluation of DMIs. In addition to players and audiences, there are also composers, instrument builders, component manufacturers, and perhaps even customers, each of whom will have a different concept of what is meant by “evaluation.”
Resumo:
We discuss the limitations and rights which may affect the researcher’s access to and use of digital, court and administrative tribunal based information. We suggest that there is a need for a European-wide investigation of the legal framework which affects the researcher who might wish to utilise this form of information. A European-wide context is required because much of the relevant law is European rather than national, but much of the constraints are cultural. It is our thesis that research improves understanding and then improves practice as that understanding becomes part of public debate. If it is difficult to undertake research, then public debate about the court system – its effectiveness, its biases, its strengths – becomes constrained. Access to court records is currently determined on a discretionary basis or on the basis of interpretation of rules of the court where these are challenged in legal proceedings. Anecdotal evidence would suggest that there are significant variations in the extent to which court documents such as pleadings, transcripts, affidavits etc are made generally accessible under court rules or as a result of litigation in different jurisdictions or, indeed, in different courts in the same jurisdiction. Such a lack of clarity can only encourage a chilling of what might otherwise be valuable research. Courts are not, of course, democratic bodies. However, they are part of a democratic system and should, we suggest – both for the public benefit and for their proper operation – be accessible and criticisable by the independent researcher. The extent to which the independent researcher is enabled access is the subject of this article. The rights of access for researchers and the public have been examined in other common law countries but not, to date, in the UK or Europe.
Resumo:
Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.
Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.
Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
Resumo:
The importance of digital inclusion to Europe is obvious: as we move towards an ever more internet-communicating society the lack of access to basic digital infrastructures for a significant segment of the population is both problematic for those individuals without access and also problematic for those providing services which should be efficient and fully utilised. The EU’s ‘Information Society’ project has been the central plank of the European attempt to build a European digital marketplace, a concept which necessitates digital inclusion of the population at large. It is a project which prefers universal service obligations to achieve inclusion. If that is to be the preferred solution I suggest that we must consider exclusion from the banking system, given that the Information Society is at root an economic community.
However, universal service obligations are not the only method whereby digital inclusion can be encouraged and I posit we may need to reconsider the role of the state as supplier of services through the concept of ‘social solidarity’.
Resumo:
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human–computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eyetracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered.
Resumo:
A 64-point Fourier transform chip is described that performs a forward or inverse, 64-point Fourier transform on complex two's complement data supplied at a rate of 13.5MHz and can operate at clock rates of up to 40MHz, under worst-case conditions. It uses a 0.6µm double-level metal CMOS technology, contains 535k transistors and uses an internal 3.3V power supply. It has an area of 7.8×8mm, dissipates 0.9W, has 48 pins and is housed in a 84 pin PLCC plastic package. The chip is based on a FFT architecture developed from first principles through a detailed investigation of the structure of the relevant DFT matrix and through mapping repetitive blocks within this matrix onto a regular silicon structure.
Resumo:
The application of fine grain pipelining techniques in the design of high performance Wave Digital Filters (WDFs) is described. It is shown that significant increases in the sampling rate of bit parallel circuits can be achieved using most significant bit (msb) first arithmetic. A novel VLSI architecture for implementing two-port adaptor circuits is described which embodies these ideas. The circuit in question is highly regular, uses msb first arithmetic and is implemented using simple carry-save adders. © 1992 Kluwer Academic Publishers.
Resumo:
This paper describes how worst-case error analysis can be applied to solve some of the practical issues in the development and implementation of a low power, high performance radix-4 FFT chip for digital video applications. The chip has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W, leading to a cost-effective silicon solution for high quality video processing applications. The analysis focuses on the effect that different radix-4 architectural configurations and finite wordlengths has on the FFT output dynamic range. These issues are addressed using both mathematical error models and through extensive simulation.
Voltage Sensing Using an Asynchronous Charge-to-Digital Converter for Energy-Autonomous Environments
Resumo:
In future systems with relatively unreliable and unpredictable energy sources such as harvesters, the system power supply may become non-deterministic. For energy effective operations, Vdd is an important parameter in any meaningful system control mechanism. Reliable and accurate on-chip voltage sensors are therefore indispensible for the power and computation management of such systems. Existing voltage sensing methods are not suitable because they usually require a stable and known reference (voltage, current, time, frequency, etc.), which is difficult to obtain in this environment. This paper describes an autonomous reference-free voltage sensor designed using an asynchronous counter powered by the charge on a capacitor and a small controller. Unlike existing methods, the voltage information is directly generated as a digital code. The sensor, fabricated in the 180 nm technology node, was tested successfully through performing measurements over the voltage range from 1.8 V down to 0.8 V.
Resumo:
This thesis establishes appropriate internet technology as a matter of sustainability for the community arts field. It begins with a contextual review that historicises community art in relation to technological, cultural, and political change. It goes on to identify key challenges for the field resulting from the emerging socio-cultural significance of the internet and digital media technologies. A conceptual review of the literature positions these issues in relation to Internet Studies, integrating key concepts from Software Studies and the computational turn with approaches from the fields of ICT for Development (ICT4D), Critical Design, and Critical Making. Grounded in these intersecting literatures the thesis offers a new pragmatic ethics of appropriate internet technology: one involving an alternative philosophical platform from which suitable internet-based technologies can be designed and assembled by practitioners. I interrogate these ideas through an in-depth investigation of CuriousWorks, an Australian community arts organisation, focusing on their current internet practices. The thesis then reflects on some experimental interventions I designed as part of the study for the purpose of provoking shifts in the field of community arts. The research findings form the foundation of a series of recommendations offered to practitioners and policy makers that may guide their critical and creative uses of internet technologies in the future.
Resumo:
Aim (1)
A pilot study to determine the accuracy of interpretation of whole slide digital images in a broad range of general histopathology cases of graded complexity. (2) To survey the participating histopathologists with regard to acceptability of digital pathology.
Materials and methods
Glass slides of 100 biopsies and minor resections were digitally scanned in their entirety, producing digital slides. These cases had been diagnosed by light microscopy at least 1 year previously and were subsequently reassessed by the original reporting pathologist (who was blinded to their original diagnosis) using digital pathology. The digital pathology-based diagnosis was compared with the original glass slide diagnosis and classified as concordant, slightly discordant (without clinical consequence) or discordant. The participants were surveyed at the end of the study.
Results
There was concordance between the original light microscopy diagnosis and digital pathology-based diagnosis in 95 of the 100 cases while the remaining 5 cases showed only slight discordance (with no clinical consequence). None of the cases were categorised as discordant. Participants had mixed experiences using digital pathology technology.
Conclusions
In the broad range of cases we examined, digital pathology is a safe and viable method of making a primary histopathological diagnosis.
Resumo:
In this paper, a multi-level wordline driver scheme is presented to improve 6T-SRAM read and write stability. The proposed wordline driver generates a shaped pulse during the read mode and a boosted wordline during the write mode. During read, the shaped pulse is tuned at nominal voltage for a short period of time, whereas for the remaining access time, the wordline voltage is reduced to save the power consumption of the cell. This shaped wordline pulse results in improved read noise margin without any degradation in access time for small wordline load. The improvement is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during the hold mode, for a short time (depending on the size of boosting capacitance), wordline voltage becomes negative and charges up to zero after a specific time that results in a lower leakage current compared to conventional SRAM. The proposed technique results in at least 2× improvement in read noise margin while it improves write margin by 3× for lower supply voltages than 0.7 V. The leakage power for the proposed SRAM is reduced by 2% while the total power is improved by 3% in the worst case scenario for an SRAM array. The main advantage of the proposed wordline driver is the improvement of dynamic noise margin with less than 2.5% penalty in area. TSMC 65 nm technology models are used for simulations.