29 resultados para design processes
Resumo:
The C-element logic gate is a key component for constructing asynchronous control in silicon integrated circuits. The purpose of this reported work is to introduce a new speed-independent C-element design, which is synthesised by the asynchronous Petrify design tool to ensure it is composed of sequential digital latches rather than complex gates. The benefits are that it guarantees correct speed-independent operation, together with easy integration in modern design flows and processes. It is compared to an equivalent speed-independent complex gate C-element design generated by Petrify in a 130 nm semiconductor process.
Resumo:
Design of small mixer impellers is not tailored for granulation as they are designed for a wide range of processes. The Kenwood KM070 was employed as a standard apparatus to undertake this investigation. Five different impeller designs were used, possessing different shapes and surface areas. The aim of this research was to evaluate the performances of these impellers to provide
guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as the binder.
The efficacy of respective granulates was measured by adding an optically
sensitive tracer.This was used to determine powder concentrations
within various regions of the granulator. It was found that impeller design influenced the homogeneity of the granules; and therefore can affect final product performance.
Resumo:
With the advancement of flexible fixture and flexible tooling, mixed production has become possible for aircraft assembly as the manufacturing processes of different aircraft/sub-assembly models are similar. However, it is a great challenge to model the problem and provide a practical solution due to the low volume and complex constraints of aircraft assemblies. To tackle this problem, this work proposes a methodology for designing the mixed production system, and a new scheduling approach is proposed by combined backward and forward scheduling methods. These methods are validated through a real-life industrial case study. Simulation results show that the number of workstations and the cycle time for making a fuselage can be reduced by 50% and 39% respectively with the newly designed mixed-model system.
Resumo:
Following the UK Medical Research Council’s (MRC) guidelines for the development and evaluation of complex interventions, this study aimed to design, develop and optimise an educational intervention about young men and unintended teenage pregnancy based around an interactive film. The process involved identification of the relevant evidence base, development of a theoretical understanding of the phenomenon of unintended teenage pregnancy in relation to young men, and exploratory mixed methods research. The result was an evidence-based, theory-informed, user-endorsed intervention designed to meet the much neglected pregnancy education needs of teenage men and intended to increase both boys’ and girls’ intentions to avoid an unplanned pregnancy during adolescence. In prioritising the development phase, this paper addresses a gap in the literature on the processes of research-informed intervention design. It illustrates the application of the MRC guidelines in practice while offering a critique and additional guidance to programme developers on the MRC prescribed processes of developing interventions. Key lessons learned were: 1) know and engage the target population and engage gatekeepers in addressing contextual complexities; 2) know the targeted behaviours and model a process of change; and 3) look beyond development to evaluation and implementation.
Resumo:
Aim
To describe the protocol used to examine the processes of communication between health professionals, patients and informal carers during the management of oral chemotherapeutic medicines to identify factors that promote or inhibit medicine concordance.
Background
Ideally communication practices about oral medicines should incorporate shared decision-making, two-way dialogue and an equality of role between practitioner and patient. While there is evidence that healthcare professionals are adopting these concordant elements in general practice there are still some patients who have a passive role during consultations. Considering oral chemotherapeutic medications, there is a paucity of research about communication practices which is surprising given the high risk of toxicity associated with chemotherapy.
Design
A critical ethnographic design will be used, incorporating non-participant observations, individual semi-structured and focus-group interviews as several collecting methods.
Methods
Observations will be carried out on the interactions between healthcare professionals (physicians, nurses and pharmacists) and patients in the outpatient departments where prescriptions are explained and supplied and on follow-up consultations where treatment regimens are monitored. Interviews will be conducted with patients and their informal carers. Focus-groups will be carried out with healthcare professionals at the conclusion of the study. These several will be analysed using thematic analysis. This research is funded by the Department for Employment and Learning in Northern Ireland (Awarded February 2012).
Discussion
Dissemination of these findings will contribute to the understanding of issues involved when communicating with people about oral chemotherapy. It is anticipated that findings will inform education, practice and policy.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.
Resumo:
In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.
Resumo:
The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery—acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.
Resumo:
Here is detailed a novel and low-cost experimental method for high-throughput automated fluid sample irradiation. The sample is delivered via syringe pump to a nozzle, where it is expressed in the form of a hanging droplet into the path of a beam of ionising radiation. The dose delivery is controlled by an upstream lead shutter, which allows the beam to reach the droplet for a user defined period of time. The droplet is then further expressed after irradiation until it falls into one well of a standard microplate. The entire system is automated and can be operated remotely using software designed in-house, allowing for use in environments deemed unsafe for the user (synchrotron beamlines, for example). Depending on the number of wells in the microplate, several droplets can be irradiated before any human interaction is necessary, and the user may choose up to 10 samples per microplate using an array of identical syringe pumps, the design of which is described here. The nozzles consistently produce droplets of 25.1 ± 0.5 μl.
Resumo:
In recent years, sonification of movement has emerged as a viable method for the provision of feedback in motor learning. Despite some experimental validation of its utility, controlled trials to test the usefulness of sonification in a motor learning context are still rare. As such, there are no accepted conventions for dealing with its implementation. This article addresses the question of how continuous movement information should be best presented as sound to be fed back to the learner. It is proposed that to establish effective approaches to using sonification in this context, consideration must be given to the processes that underlie motor learning, in particular the nature of the perceptual information available to the learner for performing the task at hand. Although sonification has much potential in movement performance enhancement, this potential is largely unrealised as of yet, in part due to the lack of a clear framework for sonification mapping: the relationship between movement and sound. By grounding mapping decisions in a firmer understanding of how perceptual information guides learning, and an embodied cognition stance in general, it is hoped that greater advances in use of sonification to enhance motor learning can be achieved.
Resumo:
Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.
Resumo:
The UK’s transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system.
Resumo:
BACKGROUND: Healthcare integration is a priority in many countries, yet there remains little direction on how to systematically evaluate this construct to inform further development. The examination of community-based palliative care networks provides an ideal opportunity for the advancement of integration measures, in consideration of how fundamental provider cohesion is to effective care at end of life.
AIM: This article presents a variable-oriented analysis from a theory-based case study of a palliative care network to help bridge the knowledge gap in integration measurement.
DESIGN: Data from a mixed-methods case study were mapped to a conceptual framework for evaluating integrated palliative care and a visual array depicting the extent of key factors in the represented palliative care network was formulated.
SETTING/PARTICIPANTS: The study included data from 21 palliative care network administrators, 86 healthcare professionals, and 111 family caregivers, all from an established palliative care network in Ontario, Canada.
RESULTS: The framework used to guide this research proved useful in assessing qualities of integration and functioning in the palliative care network. The resulting visual array of elements illustrates that while this network performed relatively well at the multiple levels considered, room for improvement exists, particularly in terms of interventions that could facilitate the sharing of information.
CONCLUSION: This study, along with the other evaluative examples mentioned, represents important initial attempts at empirically and comprehensively examining network-integrated palliative care and healthcare integration in general.
Resumo:
Many engineers currently in professional practice will have gained a degree level qualification which involved studying a curriculum heavy with mathematics and engineering science. While this knowledge is vital to the engineering design process so also is manufacturing knowledge, if the resulting designs are to be both technically and commercially viable.
The methodology advanced by the CDIO Initiative aims to improve engineering education by teaching in the context of Conceiving, Designing, Implementing and Operating products, processes or systems. A key element of this approach is the use of Design-Built-Test (DBT) projects as the core of an integrated curriculum. This approach facilitates the development of professional skills as well as the application of technical knowledge and skills developed in other parts of the degree programme. This approach also changes the role of lecturer to that of facilitator / coach in an active learning environment in which students gain concrete experiences that support their development.
The case study herein describes Mechanical Engineering undergraduate student involvement in the manufacture and assembly of concept and functional prototypes of a folding bicycle.