131 resultados para connected components
Resumo:
Although the ancient practice of traditional Chinese medicine (TCM) utilizes predominantly herbal ingredients, many of which are now the subject of intense scientific scrutiny, significant quantities of animal tissue-derived materials are also employed. Here we have used contemporary molecular techniques to study the material known as lin wa pi, the dried skin of the Heilongjiang brown frog, Rana amurensis, that is used commonly as an ingredient of many medicines, as a general tonic and as a topical antimicrobial/wound dressing. Using a simple technology that has been developed and validated over several years, we have demonstrated that components of both the skin granular gland peptidome and transcriptome persist in this material. Interrogation of the cDNA library constructed from the dried skin by entrapment and amplification of polyadenylated mRNA, using a "shotgun" primer approach and 3'-RACE, resulted in the cloning of cDNAs encoding the precursors of five putative antimicrobial peptides. Two (ranatuerin-2AMa and ranatuerin-2AMb) were obvious homologs of a previously described frog skin peptide family, whereas the remaining three were of sufficient structural novelty to be named amurins 1-3. Mature peptides were each identified in reverse phase HPLC fractions of boiling water extracts of skin and their structures confirmed by MS/MS fragmentation sequencing. Components of traditional Chinese medicines of animal tissue origin may thus contain biologically active peptides that survive the preparation procedures and that may contribute to therapeutic efficacy.
Resumo:
Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.
Resumo:
BACKGROUND/AIMS: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of adrenomedullin (AM) and intermedin (IMD) and their receptor activity modifying proteins (RAMPs 1-3) is augmented in cardiomyocytes, indicating that the myocardial AM/ IMD system may be activated in response to pressure loading and ischemic insult. The aim was to examine effects on (i) parameters of cardiomyocyte hypertrophy and on (ii) expression of AM and IMD and their receptor components in NO-deficient cardiomyocytes of an intervention chosen specifically for ability to alleviate pressure loading and ischemic injury concurrently. METHODS: The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1)) was given to rats for 8 weeks, with/ without concurrent administration of beta-adrenoceptor antagonist, atenolol (25 mg.kg(-1).day(-1)) / calcium channel blocker, nifedipine (20mg.kg(-1).day(-1)). RESULTS: In L-NAME treated rats, atenolol / nifedipine abolished increases in systolic blood pressure and plasma AM and IMD levels and in left ventricular cardiomyocytes: (i) normalized increased cell width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP, BNP, ET) genes; (ii) normalized augmented membrane protein oxidation; (iii) normalized mRNA expression of AM, IMD, RAMP1, RAMP2 and RAMP3. CONCLUSIONS: normalization of blood pressure and membrane oxidant status together with prevention of hypertrophy and normalization of the augmented expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes by atenolol / nifedipine supports involvement of both pressure loading and ischemic insult in stimulating cardiomyocyte hypertrophy and induction of these counter-regulatory peptides and their receptor components. Attenuation of augmented expression of IMD in this model cannot however be explained simply by prevention of cardiomyocyte hypertrophy.