40 resultados para cardiac signals, EEG signals, analysis, higher order spectra


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambisonics is spatial audio technique that attempts to recreate a physical sound field over as large an area as possible. Higher Order Ambisonic systems modelled with near field loudspeakers in free field as well as in a simulated room are investigated. The influence of reflections on the image quality is analysed objectively for both a studio-sized and large reproduction environment using the relative intensity of the reproduced sound field. The results of a simulated enclosed HOA system in the studio-sized room are compared to sound field measurements in the reproduced area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proton NMR spectra of aryl n-propyl sulfides gave rise to what may appear to be first-order proton NMR spectra. Upon oxidation to the corresponding sulfone, the spectra changed appearance dramatically and were clearly second-order. A detailed analysis of these second-order spectra, in the sulfone series, provided vicinal coupling constants which indicated that these compounds had a moderate preference for the anti-conformer, reflecting the much greater size of the sulfone over the sulfide. It also emerged, from this study, that the criterion for observing large second-order effects in the proton NMR spectra of 1,2-disubstituted ethanes was that the difference in vicinal coupling constants must be large and the difference in geminal coupling constants must be small. n-Propyl triphenylphosphonium bromide and 2-trimethylsilylethanesulfonyl chloride, and derivatives thereof, also exhibited second-order spectra, again due to the bulky substituents. Since these spectra are second-order due to magnetic nonequivalence of the nuclei in question, not chemical shifts, the proton spectra are perpetually second-order and can never be rendered first-order by using higher field NMR spectrometers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event-related potentials (ERPs) and other electroencephalographic (EEG) evidence show that frontal brain areas of higher and lower socioeconomic status (SES) children are recruited differently during selective attention tasks. We assessed whether multiple variables related to self-regulation (perceived mental effort) emotional states (e.g., anxiety, stress, etc.) and motivational states (e.g., boredom, engagement, etc.) may co-occur or interact with frontal attentional processing probed in two matched-samples of fourteen lower-SES and higher-SES adolescents. ERP and EEG activation were measured during a task probing selective attention to sequences of tones. Pre- and post-task salivary cortisol and self-reported emotional states were also measured. At similar behavioural performance level, the higher-SES group showed a greater ERP differentiation between attended (relevant) and unattended (irrelevant) tones than the lower-SES group. EEG power analysis revealed a cross-over interaction, specifically, lower-SES adolescents showed significantly higher theta power when ignoring rather than attending to tones, whereas, higher-SES adolescents showed the opposite pattern. Significant theta asymmetry differences were also found at midfrontal electrodes indicating left hypo-activity in lower-SES adolescents. The attended vs. unattended difference in right midfrontal theta increased with individual SES rank, and (independently from SES) with lower cortisol task reactivity and higher boredom. Results suggest lower-SES children used additional compensatory resources to monitor/control response inhibition to distracters, perceiving also more mental effort, as compared to higher-SES counterparts. Nevertheless, stress, boredom and other task-related perceived states were unrelated to SES. Ruling out presumed confounds, this study confirms the midfrontal mechanisms responsible for the SES effects on selective attention reported previously and here reflect genuine cognitive differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150–200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very fast method, cluster low-energy electron diffraction (LEED) is proposed for LEED I-V spectral analysis, in which three appproximations are introduced: the small-atom approximation, omission of the structure factors, and truncation of higher order ( > 2) scattering events. The method has been tested using a total of four sets of I-V spectra calculated by fully dynamic LEED for (i) the simple overlayer system, O on Ni{100}, and (ii) the reconstructed system, Cu on W{100}, and also one set of experimental data from W{100}-c(2 X 2)-Cu. In each case the correct structural parameters are recovered. It is suggested that for complex systems cluster LEED provides an efficient fast route to trial structures, which could be refined by automated tenser LEED.