50 resultados para candidate gene
Resumo:
Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 Q/R polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet).
Resumo:
Understanding the determinants of resistance of 5-fluorouracil (5FU) is of significant value to optimizing administration of the drug, and introducing novel agents and treatment strategies. Here, the expression of 92 genes involved in 5FU transport, metabolism, co-factor (folate) metabolism and downstream effects was measured by real-time PCR low density arrays in 14 patient-derived colorectal cancer xenografts characterized for 5FU resistance. Candidate gene function was tested by siRNA and uridine modulation, and immunoblotting, apoptosis and cell cycle analysis. Predictive significance was tested by immunohistochemistry of tumors from 125 stage III colorectal cancer patients treated with and without 5FU. Of 8 genes significantly differentially expressed between 5FU sensitive and resistant xenograft tumors, CTPS2 was the gene with the highest probability of differential expression (p = 0.008). Reduction of CTPS2 expression by siRNA increased the resistance of colorectal cancer cell lines DLD1 and LS174T to 5FU and its analog, FUDR. CTPS2 siRNA significantly reduced cell S-phase accumulation and apoptosis following 5FU treatment. Exposure of cells to uridine, a precursor to the CTPS2 substrate uridine triphosphate, also increased 5FU resistance. Patients with low CTPS2 did not gain a survival benefit from 5FU treatment (p = 0.072), while those with high expression did (p = 0.003). Low CTPS2 expression may be a rationally-based determinant of 5FU resistance.
Resumo:
A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families. After all quality control checks, the analysis of 707 European-ancestry families included 1615 affected and 1602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction for marker-marker linkage disequilibrium was carried out with 5861 single nucleotide polymorphisms (SNPs; Illumina version 4.0 linkage map). Suggestive evidence for linkage ( European families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in nonparametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-LOD support interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci might exist in the region. In this era of genomewide association and deep resequencing studies, consensus linkage regions deserve continued attention, given that linkage signals can be produced by many types of genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a region. Molecular Psychiatry (2009) 14, 786-795; doi:10.1038/mp.2009.11; published online 17 February 2009
Resumo:
Purpose of review: Gene polymorphism studies are growing at a quasiexponential rate and aim to improve immediate and long-term outcomes in renal transplantation. This review highlights recent evidence and potential future directions for genetic research studies.
Recent findings: Studies are largely based on immunity, inflammation and pharmacogenetics, investigating mostly 'surrogate' outcomes with sometimes conflicting results. However, the last 12 months has also heralded the emergence of important genome-wide association studies on transplantation, more robust replicated multicentre analyses of candidate gene variants, meta-analyses, and an increasing interest in copy number variation and donor genetics.
Summary: These studies set the scene for further investigation, aiming to understand pathways of disease and biomarkers of risk, and are leading to a greater understanding of the biology of transplantation. Future studies will require focus on donor : recipient and gene : environment interactions, and an integrated approach of 'transplantomics' to evaluate long-term outcomes in multinational collaborations.
Resumo:
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Resumo:
BACKGROUND: Susceptibility to aggressive periodontitis (AgP) is influenced by genetic as well as environmental factors. Studies linking gene variants to AgP have been mainly centred in developed countries with limited data from Africa.
AIM: To investigate whether previously reported candidate gene associations with AgP could be replicated in a population from Sudan.
METHODS: The investigation was a case-control design. Cases with AgP (n = 132) and controls (n = 136) were identified from patients attending the Periodontal Department in Khartoum Dental Hospital. Genotyping was performed using the Sequenom MassARRAY iPLEX platform. Analysis focused on gene variants with a minor allele frequency (MAF) > 25% in the Sudanese subjects that had previously been reported to be associated with AgP.
RESULTS: One candidate gene rs1537415 (GLT6D1) was significantly associated with AgP, OR = 1.50 (95% CI 1.04-2.17), p = 0.0295 (increasing to p = 0.09 after correction for multiple testing). The association strengthened to OR = 1.56 (95% CI 1.15-2.16), p = 0.0042 when the controls were supplemented with data from the Hap map for the Yoruba in Ibadan (n = 147) and remained significant (p = 0.013) after correction for multiple testing.
CONCLUSION: The study independently replicated the finding that rs1537415, a variant in glycosyl transferase gene GLT6D1, is associated with AgP and provided the first report of genetic associations with AgP in a Sudanese population.
Resumo:
Introduction
Despite excellent first year outcomes in kidney transplantation, there remain significant long-term complications related to new-onset diabetes after transplantation (NODAT). The purpose of this study was to validate the findings of previous investigations of candidate gene variants in patients undergoing a protocolised, contemporary immunosuppression regimen, using detailed serial biochemical testing to identify NODAT development.
Methods
One hundred twelve live and deceased donor renal transplant recipients were prospectively followed-up for NODAT onset, biochemical testing at days 7, 90, and 365 after transplantation. Sixty-eight patients were included after exclusion for non-white ethnicity and pre-transplant diabetes. Literature review to identify candidate gene variants was undertaken as described previously.
Results
Over 25% of patients developed NODAT. In an adjusted model for age, sex, BMI, and BMI change over 12 months, five out of the studied 37 single nucleotide polymorphisms (SNPs) were significantly associated with NODAT: rs16936667:PRDM14 OR 10.57;95% CI 1.8–63.0;p = 0.01, rs1801282:PPARG OR 8.5; 95% CI 1.4–52.7; p = 0.02, rs8192678:PPARGC1A OR 0.26; 95% CI 0.08–0.91; p = 0.03, rs2144908:HNF4A OR 7.0; 95% CI 1.1–45.0;p = 0.04 and rs2340721:ATF6 OR 0.21; 95%CI 0.04–1.0; p = 0.05.
Conclusion
This study represents a replication study of candidate SNPs associated with developing NODAT and implicates mTOR as the central regulator via altered insulin sensitivity, pancreatic β cell, and mitochondrial survival and dysfunction as evidenced by the five SNPs.
General significance
1) Highlights the importance of careful biochemical phenotyping with oral glucose tolerance tests to diagnose NODAT in reducing time to diagnosis and missed cases.
2)This alters potential genotype:phenotype association.
3)The replication study generates the hypothesis that mTOR signalling pathway may be involved in NODAT development.
Resumo:
Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P < 0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.
Resumo:
The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.Leukemia advance online publication, 17 June 2016; doi:10.1038/leu.2016.149.
Resumo:
Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.
Resumo:
Background: The histidine triad nucleotide-binding protein 1, HINT1, hydrolyzes adenosine 5'monophosphoramidate substrates such as AMP-morpholidate. The human HINT1 gene is located on chromosome 5q31.2, a region implicated in linkage studies of schizophrenia. HINT1 had been shown to have different expression in postmortem brains between schizophrenia patients and unaffected controls. It was also found to be associated with the dysregulation of postsynaptic dopamine transmission, thus suggesting a potential role in several neuropsychiatric diseases.
Resumo:
Aims/hypothesis
The genetic determinants of diabetic nephropathy remain poorly understood. We aimed to identify novel susceptibility genes for diabetic nephropathy.
MethodsWe performed a genome-wide association study using 1000 Genomes-based imputation to compare type 1 diabetic nephropathy cases with proteinuria and with or without renal failure with control patients who have had diabetes for more than 15 years and no evidence of renal disease.
ResultsNone of the single nucleotide polymorphisms (SNPs) tested in a discovery cohort composed of 683 cases and 779 controls reached genome-wide statistical significance. The 46 top hits (p < 10−5) were then sought for first-stage analysis in the Genetics of Kidneys in Diabetes US (US-GoKinD) study, an independent population of 820 cases and 885 controls. Two SNPs in strong linkage disequilibrium with each other and located in the SORBS1 gene were consistently and significantly (p < 10−4) associated with diabetic nephropathy. The minor rs1326934-C allele was less frequent in cases than in controls (0.34 vs 0.43) and was associated with a decreased risk for diabetic nephropathy (OR 0.70; 95% CI 0.60, 0.82). However, this association was not observed in a second stage with two additional diabetic nephropathy cohorts, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK and Republic of Ireland (UK-ROI; p = 0.15) and the Finnish Diabetic Nephropathy (FinnDiane; p = 0.44) studies, totalling 2,142 cases and 2,494 controls. Altogether, the random-effect meta-analysed rs1326934-C allele OR for diabetic nephropathy was 0.83 (95% CI 0.72, 0.96; p = 0.009).
Conclusions/interpretationThese data suggest that SORBS1 might be a gene involved in diabetic nephropathy.
Resumo:
BACKGROUND: While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease.
RESULTS: We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.
Resumo:
Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user’s perspective.