234 resultados para beta-catenin
Resumo:
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Resumo:
Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes.
Resumo:
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Resumo:
BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly.
METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD.
RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas.
CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.
Resumo:
The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.