98 resultados para autonomous underwater vehicles
Resumo:
This paper employs a unique decentralised cooperative control method to realise a formation-based collision avoidance strategy for a group of autonomous vehicles. In this approach, the vehicles' role in the formation and their alert and danger areas are first defined, and the formation-based intra-group and external collision avoidance methods are then proposed to translate the collision avoidance problem into the formation stability problem. The extension–decomposition–aggregation formation control method is next employed to stabilise the original and modified formations, whilst manoeuvring, and subsequently solve their collision avoidance problem indirectly. Simulation study verifies the feasibility and effectiveness of the intra-group and external collision avoidance strategy. It is demonstrated that both formation control and collision avoidance problems can be simultaneously solved if the stability of the expanded formation including external obstacles can be satisfied.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Resumo:
Rheologically structured vehicle (RSV) gels were developed as delivery systems for vaginal mucosal vaccination with an HIV-1 envelope glycoprotein (CN54gp140). RSVs comprised a mucoadhesive matrix forming and vaginal fluid absorbing polymer. The mucoadhesive and rheological properties of the RSVs were evaluated in vitro, and the distribution, antigenicity and release of CN54gp140 were analysed by ELISA. CN54gp140 was uniformly distributed within the RSVs and continuously released in vitro in an antigenically intact form over 24 h. Vaginal administration to rabbits induced specific serum IgG, and IgG and IgA in genital tract secretions. The RSVs are a viable delivery modality for vaginal immunization.
Resumo:
A techno-economic model of an autonomous wave-powered desalination plant is developed and indicates that fresh water can be produced for as little as £0.45/m3. The advantages of an autonomous wave-powered desalination plant are also discussed indicating that the real value of the system is enhanced due to its flexibility for deployment and reduced environmental impact. The modelled plant consists of the Oyster wave energy converter, conventional reverse osmosis membranes and a pressure exchanger–intensifier for energy recovery. A time-domain model of the plant is produced using wave-tank experimentation to calibrate the model of Oyster, manufacturer's data for the model of the reverse osmosis membranes and a hydraulic model of the pressure exchanger–intensifier. The economic model of the plant uses best-estimate cost data which are reduced to annualised costs to facilitate the calculation of the cost of water. Finally, the barriers to the deployment of this technology are discussed, but they are not considered insurmountable.