92 resultados para adenomatous polyposis coli
Production of recombinant proteins in Escherichia coli using an N-terminal tag derived from sortase.
Resumo:
Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.
Resumo:
Objective: Genetic testing and colonoscopy is recommended for people with a strong history of colorectal cancer (CRC). However, families must communicate so that all members are aware of the risk. The study aimed to explore the factors influencing family communication about genetic risk and colonoscopy among people with a strong family history of CRC who attended a genetic clinic with a view to having a genetic test for hereditary non-polyposis colon cancer (HNPCC).
Resumo:
Hereditary non-polyposis colorectal cancer (HNPCC), predominantly due to germline MLH1/MSH2 mutations, is the commonest form of hereditary colorectal cancer (CRC), but data in Asians are sparse. We sequenced the MLH1/MSH2 coding and promoter core regions in CRC patients diagnosed below age 40, and/or with multiple primary cancers or familial cancer clustering suggestive of HNPCC, and correlated deleterious mutations with clinical and tumour features. Forty-six Chinese, Malay and Indian kindreds participated. Of the 153 cancers reported in the 46 kindreds, stomach (14%) and urogenital cancers (13%) were the most common extracolonic cancers, whereas endometrial cancer comprised only 7%. Eleven different MLH1 and 12 MSH2 mutations were identified, including nine novel and four recurring mutations in the Chinese. One Indian was a compound heterozygote for an MLH1 and MSH2 mutation. The MLH1/MSH2 mutation data in the Malays and the Indians represents the first in these ethnic groups. Factors strongly associated with deleterious mutations were the Amsterdam criteria, family history of stomach or multiple primary cancers, and MSI-high tumours, whereas family history of endometrial cancer and young cancer age alone correlated poorly. Distinct clinical and molecular characteristics were identified among Asian HNPCC kindreds and may have important clinical implications.
Resumo:
Phagocytosis and activation of the NADPH oxidase are important mechanisms by which neutrophils and macrophages engulf and kill microbial pathogens. We investigated the role of PI3K signaling pathways in the regulation of the oxidase during phagocytosis of Staphylococcus aureus and Escherichia coli by mouse and human neutrophils, a mouse macrophage-like cell line and a human myeloid-like cell line. Phagocytosis of these bacteria was promoted by serum, independent of serum-derived antibodies, and effectively abolished in mouse neutrophils lacking the beta(2)-integrin common chain, CD18. A combination of PI3K isoform-selective inhibitors, mouse knock-outs, and RNA-interference indicated CD18-dependent activation of the oxidase was independent of class I and II PI3Ks, but substantially dependent on the single class III isoform (Vps34). Class III PI3K was responsible for the synthesis of PtdIns( 3) P on phagosomes containing either bacteria. The use of mouse neutrophils carrying an appropriate knock-in mutation indicated that PtdIns(3) P binding to the PX domain of their p40(phox) oxidase subunit is important for oxidase activation in response to both S aureus and E coli. This interaction does not, however, account for all the PI3K sensitivity of these responses, particularly the oxidase response to E coli, suggesting that additional mechanisms for PtdIns( 3) P-regulation of the oxidase must exist. ( Blood. 2008; 112: 5202-5211)
Resumo:
Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.
Resumo:
After demonstrating the lack of effectiveness of standard antibiotics against the acquired antibiotic resistance of Bacillus cereus (NCTC 10989), Escherichia coli (NCTC 1186), and Staphylococcus aureus (ATCC 12715), we showed that the following natural substances were antibacterial against these resistant pathogens: cinnamon oil, oregano oil, thyme oil, carvacrol, (S)-perillaldehyde, 3,4-dihydroxybenzoic acid (beta-resorcylic acid), and 3,4-dihydroxyphenethylamine (dopamine). Exposure of the three pathogens to a dilution series of the test compounds showed that oregano oil was the most active substance. The oils and pure compounds exhibited exceptional activity against B. cereus vegetative cells, with oregano oil being active at nanogram, per milliliter levels. In contrast, activities against B. cereus spores were very low. Activities of the test compounds were in the following approximate order: oregano oil > thyme oil approximate to carvacrol > cinnamon oil > perillaldehyde > dopamine > beta-resorcylic acid. The order of susceptibilities of the pathogens to inactivation was as follows: B. cereus (vegetative) much greater than S. aureus approximate to E. coli much greater than B. cereus (spores). Some of the test substances may be effective against antibiotic-resistant bacteria in foods and feeds.
Resumo:
To investigate the mode of action of Taurolin, an antimicrobial preparation, the growth inhibitory and bacteriocidal effects of taurolidine and taurultam solutions on Escherichia coli isolated from a diagnosed urinary tract infection were examined at 37-degrees-C. The inhibitory effects of taurolidine solutions were observed to be greater than those of taurultam solutions at comparative concentrations; however, the presence of sublethal concentrations of formaldehyde (methylene glycol) associated with taurolidine was sufficient to account for this. The bacteriocidal activity of taurolidine (2.0% w/v) was greater than that of taurultam (4.5% w/v). Both compounds produced biphasic death rates with dissimilar initial slopes, suggested to be due to the presence of formaldehyde in taurolidine solutions. These observations indicate that the growth inhibitory and bacteriocidal effects of Taurolin solutions are primarily due to taurultam, however, the presence of sublethal concentrations of formaldehyde is significant in the expression of this activity.