61 resultados para acrocentric chromosome
Resumo:
A combination of linkage analyses and association studies are currently employed to promote the identification of genetic factors contributing to inherited renal disease. We have standardized and merged complex genetic data from disparate sources, creating unique chromosomal maps to enhance genetic epidemiological investigations. This database and novel renal maps effectively summarize genomic regions of suggested linkage, association, or chromosomal abnormalities implicated in renal disease. Chromosomal regions associated with potential intermediate clinical phenotypes have been integrated, adding support for particular genomic intervals. More than 500 reports from medical databases, published scientific literature, and the World Wide Web were interrogated for relevant renal-related information. Chromosomal regions highlighted for prioritized investigation of renal complications include 3q13-26, 6q22-27, 10p11-15, 16p11-13, and 18q22. Combined genetic and physical maps are effective tools to organize genetic data for complex diseases. These renal chromosome maps provide insights into renal phenotype-genotype relationships and act as a template for future genetic investigations into complex renal diseases. New data from individual researchers and/or future publications can be readily incorporated to this resource via a user-friendly web-form accessed from the website: www.qub.ac.uk/neph-res/CORGI/index.php.
Resumo:
Coronary heart disease (CHD) remains a leading cause of death across the world. A region on chromosome 9p21.3 has been recently reported to be associated with CHD. We evaluated 3 SNPs and 3 common haplotypes in the 9p21.3 region in 1494 individuals from 580 Irish families, where at least 1 member had early-onset (males
Resumo:
Molecular studies support pharmacological evidence that phosphoinositide signaling is perturbed in schizophrenia and bipolar disorder. The phosphatidylinositol-4-phosphate-5-kinase type-II alpha (PIP4K2A) gene is located on chromosome 10p12. This region has been implicated in both diseases by linkage, and PIP4K2A directly by association. Given linkage evidence in the Irish Study of High Density Schizophrenia Families (ISHDSF) to a region including 10p12, we performed an association study between genetic variants at PIP4K2A and disease. No association was detected through single-marker or haplotype analysis of the whole sample. However, stratification into families positive and negative for the ISHDSF schizophrenia high-risk haplotype (HRH) in the DTNBP1 gene and re-analysis for linkage showed reduced amplitude of the 10p12 linkage peak in the DTNBP1 HRH positive families. Association analysis of the stratified sample showed a trend toward association of PIP4K2A SNPs rs1417374 and rs1409395 with schizophrenia in the DTNBP1 HRH positive families. Despite this apparent paradox, our data may therefore suggest involvement of PIP4K2A in schizophrenia in those families for whom genetic variation in DTNBP1 appears also to be a risk factor. This trend appears to arise from under-transmission of common alleles to female cases. Follow-up association analysis in a large Irish schizophrenia case-control control sample (ICCSS) showed significant association with disease of a haplotype comprising these same SNPs rs1417374-rs1409395, again more so in affected females, and in cases with negative family history of the disease. This study supports a minor role for PIP4K2A in schizophrenia etiology in the Irish population. (C) 2009 Wiley-Liss, Inc.
Resumo:
Background: Several lines of evidence suggest that the clinical heterogeneity of schizophrenia is due to genetic heterogeneity. Genetic heterogeneity may decrease the signal-to-noise ratio in linkage and association studies. Therefore, linkage studies of clinically homogeneous classes of psychotic illness may result in greater power to detect at least some loci.
Resumo:
The chromosome number of Gracilaria verrucosa (Hudson) Papenfuss was estimated in numerous individuals from different populations of the Cape Gris-Nez area of Northern France. To optimize estimates and to minimize counting errors, several counts were made on the same nucleus and in different nuclei of the same individual. The haploid chromosome number was estimated in vegetative gametophytic cells and tetrasporocytic cells; the diploid number was estimated from tetrasporophytic vegetative cells. The basic haploid number was n = 17 +/- 1, whereas all other Gracilaria species for which chromosome numbers are available are reported to have n = 24. These include populations of G. verrucosa from Norway and Wales that have previously been shown to be conspecific with the Cape Gris-Nez populations by comparison of plastid DNA data. G. verrucosa is therefore one of the few red algae for which populations with different chromosome numbers are known.
Resumo:
AIMS/HYPOTHESIS: Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. METHODS: We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. RESULTS: In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p?=?0.00045, p (36tests)?=?0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p?=?0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p?=?0.0040), but the association did not remain after Bonferroni correction (p (36tests)?=?0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. CONCLUSIONS/INTERPRETATION: A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.
Resumo:
We have cloned chromosomal genes determining the aerobactin iron transport system from the Escherichia coli K1 strain VW187. Mapping and hybridization experiments showed that the VW187 aerobactin region was identical to that of the plasmid ColV-K30. However, in the E. coli K-12 background, the biosynthesis of both siderophore and ferric aerobactin receptor encoded by the VW187-derived recombinant plasmids was not repressed by iron to the same extent found when a recombinant plasmid derived from pColV-K30 was used. RNA-DNA dot-blot hybridization experiments demonstrated that the aerobactin-specific mRNA synthesized by the VW187-derived clones was not iron regulated in E. coli K-12. In contrast, the synthesis of aerobactin and its receptor in strain VW187 was completely repressed by iron regardless of whether the recombinant plasmids originated from VW187 or pColV-K30. Similar results were obtained with gene fusions in which a promoterless lac operon was placed under the control of aerobactin promoter regions of either chromosome- or plasmid-mediated aerobactin systems. DNA sequencing of the chromosomal aerobactin promoter region showed changes in bases located immediately upstream to the -35 region compared with the corresponding region in pColV-K30, which is known to be part of the binding site for the Fur repressor protein.
Resumo:
The incidence of the aerobactin system and the genetic location of aerobactin genes were investigated in Escherichia coli K1 neonatal isolates belonging to different clonal groups. A functional aerobactin system was found in all members of the O7 MP3, O1 MP5, O1 MP9, and O18 MP9 clonal groups examined and also in K1 strains having O6, O16, and O75 lipopolysaccharide types, which are less frequently associated with neonatal infections. In contrast, the aerobactin system was not detected in strains from the O18 MP6 clone. The combined results of plasmid and colony hybridization experiments showed that the aerobactin genes were located on the chromosome in the majority (75%) of the aerobactin-producing K1 isolates, the genetic location of the aerobactin genes was closely correlated with the outer membrane protein profile rather than the O lipopolysaccharide type, the K1 strains harboring a chromosome-mediated aerobactin system did not possess colicin V genes, and five of six K1 isolates possessing a plasmid-borne aerobactin system contained colicin V genes which were located on the same plasmids carrying the aerobactin genes. The comparison of hemolysin production with possession of the aerobactin system in virulent clones of E. coli K1 strains showed that all of the aerobactin-producing strains from the O18 MP9 and O7 MP3 clonal groups did not synthesize hemolysin, whereas 11 of 12 aerobactin-nonproducing O18 MP6 isolates were hemolytic. Of the K1 strains examined, 92.5% possessed either the aerobactin system or the ability to produce hemolysin or both.