145 resultados para Wijsman topology
Resumo:
We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T' has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space $\omega$ due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on $\omega$, $T\oplus T$ is also hypercyclic.
Resumo:
Stable networks of order r where r is a natural number refer to those networks that are immune to coalitional deviation of size r or less. In this paper, we introduce stability of a finite order and examine its relation with efficient networks under anonymous and component additive value functions and the component-wise egalitarian allocation rule. In particular, we examine shapes of networks or network architectures that would resolve the conflict between stability and efficiency in the sense that if stable networks assume those shapes they would be efficient and if efficient networks assume those shapes, they would be stable with minimal further restrictions on value functions.
Resumo:
Driven by the requirements of the bionic joint or tracking equipment for the spherical parallel manipulators (SPMs) with three rotational degrees-of-freedom (DoFs), this paper carries out the topology synthesis of a class of three-legged SPMs employing Lie group theory. In order to achieve the intersection of the displacement subgroups, the subgroup characteristics and operation principles are defined in this paper. Mainly drawing on the Lie group theory, the topology synthesis procedure of three-legged SPMs including four stages and two functional blocks is proposed, in which the assembly principles of three legs are defined. By introducing the circular track, a novel class of three-legged SPMs is synthesized, which is the important complement to the existing SPMs. Finally, four typical examples are given to demonstrate the finite displacements of the synthesized three-legged SPMs.
Resumo:
Recent advances in hardware development coupled with the rapid adoption and broad applicability of cloud computing have introduced widespread heterogeneity in data centers, significantly complicating the management of cloud applications and data center resources. This paper presents the CACTOS approach to cloud infrastructure automation and optimization, which addresses heterogeneity through a combination of in-depth analysis of application behavior with insights from commercial cloud providers. The aim of the approach is threefold: to model applications and data center resources, to simulate applications and resources for planning and operation, and to optimize application deployment and resource use in an autonomic manner. The approach is based on case studies from the areas of business analytics, enterprise applications, and scientific computing.
Resumo:
The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.
Resumo:
Surface patterning in three dimensions is of great importance in biomaterials design for controlling cell behavior. A facile one-step functionalization of biodegradable PDLLA fibers using amphiphilic diblock copolymers is demonstrated here to systematically vary the fiber surface composition. The copolymers comprise a hydrophilic poly[oligo(ethylene glycol) methacrylate] (POEGMA), poly[(2-methacryloyloxy)ethyl phosphorylcholine] (PMPC), or poly[2-(dimethylamino)ethyl methacrylate)] (PDMAEMA) block and a hydrophobic poly(l-lactide) (PLA) block. The block copolymer-modified fibers have increased surface hydrophilicity compared to that of PDLLA fibers. Mixtures of PLAPMPC and PLAPOEGMA copolymers are utilized to exploit microphase separation of the incompatible hydrophilic PMPC and POEGMA blocks at the fiber surface. Conjugation of an RGD cell-adhesive peptide to one hydrophilic block (POEGMA) using thiol-ene chemistry produces fibers with domains of cell-adhesive (POEGMA) and cell-inert (PMPC) sites, mimicking the adhesive properties of the extracellular matrix (ECM). Human mesenchymal progenitor cells (hES-MPs) showed much better adhesion to the fibers with surface-adhesive heterogeneity compared to that to fibers with only adhesive or only inert surface chemistries.
Resumo:
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology is extended to allow the virtual partitioning of volume cells. A valid description of the topology, including relative orientations, is maintained which enables downstream interrogations to be performed on the analysis topology description, such as determining if a specific meshing strategy can be applied to the virtual volume cells. As the virtual representation is a true non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. Therefore, the advantages of non-manifold modelling are exploited within the manifold modelling environment of a major commercial CAD system without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies here are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence.
Resumo:
The myriad of technologies and protocols working at different layers pose significant security challenges in the upcoming Internet of Things (IoT) paradigm. Security features and needs vary from application to application and it is layer specific. In addition, security has to consider the constraints imposed by energy limited sensor nodes and consider the specific target application in order to provide security at different layers. This paper analyses current standardization efforts and protocols. It proposes a generic secured network topology for IoT and describes the relevant security challenges. Some exploitation examples are also provided.
Resumo:
This study investigates topology optimization of energy absorbing structures in which material damage is accounted for in the optimization process. The optimization objective is to design the lightest structures that are able to absorb the required mechanical energy. A structural continuity constraint check is introduced that is able to detect when no feasible load path remains in the finite element model, usually as a result of large scale fracture. This assures that designs do not fail when loaded under the conditions prescribed in the design requirements. This continuity constraint check is automated and requires no intervention from the analyst once the optimization process is initiated. Consequently, the optimization algorithm proceeds towards evolving an energy absorbing structure with the minimum structural mass that is not susceptible to global structural failure. A method is also introduced to determine when the optimization process should halt. The method identifies when the optimization method has plateaued and is no longer likely to provide improved designs if continued for further iterations. This provides the designer with a rational method to determine the necessary time to run the optimization and avoid wasting computational resources on unnecessary iterations. A case study is presented to demonstrate the use of this method.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.