67 resultados para Ultrasonic transducers.
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a computational framework based on finite element methods to simulate the fibre-embedding process using ultrasonic consolidation process. The computational approach comprises of a material model which takes into account thermal and acoustic softening effects and a friction model which indicates the realistic friction behaviour at the interfaces. The derived material model and developed friction model have been incorporated in finite element model. Using the implemented material and friction model, thermo-mechanical analyses of embedding of fibre in aluminium alloy 3003 has been performed. Effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads, is studied and compared with the experimental results. The presented work has specially focused on the quality of the developed weld which could be evaluated by the friction work and the coverage of the fibre which is estimated by the plastic flow around the fibre. The computed friction work obtained from the thermomechanial analyses performed in this study show a similar trend as that of the experimentally found fracture energies. © Springer-Verlag London Limited 2010.
Resumo:
Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.
Resumo:
6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.
Resumo:
Ultrasonic consolidation process is a rapid manufacturing process used to join thin layers of metal at low temperatures and low energy consumption. In this work, finite element method has been used to simulate the ultrasonic consolidation of Aluminium alloys 6061 (AA-6061) and 3003 (AA-3003). A thermomechanical material model has been developed in the framework of continuum cyclic plasticity theory which takes into account both volume (acoustic softening) and surface (thermal softening due to friction) effects. A friction model based on experimental studies has been developed, which takes into account the dependence of coefficient of friction upon contact pressure, amount of slip, temperature and number of cycles. Using the developed material and friction model ultrasonic consolidation (UC) process has been simulated for various combinations of process parameters involved. Experimental observations are explained on the basis of the results obtained in the present study. The current research provides the opportunity to explain the differences of the behaviour of AA-6061 and AA-3003 during the ultrasonic consolidation process. Finally, trends of the experimentally measured fracture energies of the bonded specimen are compared to the predicted friction work at the weld interface resulted from the simulation at similar process condition. Similarity of the trends indicates the validity of the developed model in its predictive capability of the process. © 2008 Materials Research Society.
Resumo:
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.
Resumo:
Ultrasonic metal welding can be used to join two metal foils. There are two different effects under ultrasonic welding. They are surface effect and volume effect. These two effects were validated under macro experiments. Then how to validate in micro test is seldom researched. EBSD method was used to research the microstructure evolution of AA6061 under ultrasonic welding. The image maps indicating all Euler angle and the correlated misorientation angle distribution of both original foil and welding sample were got by EBSD in order to understand how ultrasonic welding affect the grain orientation and microstructure. The test shows that after ultrasonic vibration, the grain size has little change. And ultrasonic vibration results in a very weak texture. FEM results also validate these conclusions.
Resumo:
A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.
Resumo:
Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.
Resumo:
In this work, a computational framework has been proposed to successfully simulate the fibre embedding using ultrasonic consolidation process. The main components of the proposed computational approach are a developed constitutive model and a friction model which are especially suitable for the condition of ultrasonic process. The effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads are studied. The presented work especially focuses on the quality of the developed weld and the fibre coverage due to the plastic flow around the fibre. The areas of maximum plastic flow predicted by the simulation are confirmed by the EBSD microstructural studies. © 2011 Inderscience Enterprises Ltd.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
Resumo:
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Resumo:
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.