63 resultados para Topical Solute


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA). In this study, silicon microneedle arrays were used, for the first time, to enhance skin penetration of ALA in vitro and in vivo. Puncturing excised murine skin with 6x7 arrays of microneedles 270 mum in height, with a diameter of 240 mum at the base and an interspacing of 750 mum led to a significant increase in transdermal delivery of ALA released from a bioadhesive patch containing 19 mg ALA cm(-2). Microneedle puncture enhanced ALA delivery to the upper regions of excised porcine skin but, at mean depths of 1.875 mm, ALA concentrations were similar to control values, possibly reflecting binding of ALA by tissue components. However, and importantly, in vivo experiments using nude mice showed that microneedle puncture could reduce application time and ALA dose required to induce high levels of the photosensitiser protoporphyrin IX in skin. This clearly has implications for clinical practice, as shorter application times would mean improved patient and clinician convenience and also that more patients could be treated in the same session. As ALA is expensive and degrades rapidly via a second order reaction, reducing the required dose is also a notable advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-Ray Photoelectron Spectroscopy (XPS) was used to quantify the amount of bromide ions present in two samples of [C(4)mpyrr]Br dissolved in the room temperature ionic liquid (RTIL) [C(4)mpyrr][N(Tf)(2)]. One sample was of a known concentration (0.436 Br atom%); the other was a saturated solution. The results obtained from quantitative XPS analysis indicated that the saturated sample had a concentration, or solubility, of 0.90 Br atom% (746 mM) at 298 K, which was then independently confirmed by potential-step chronoamperometry of the same solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the clinical and histopathological responses of vulval lichen sclerosus (LS) and squamous hyperplasia (SH) to photodynamic therapy (PDT). A novel bioadhesive patch containing aminolevulinic acid (ALA) at a dose of (38 mg/cm(2)) was used to treat 10 patients before irradiation with light of 630 nm. Clinical, histopathological and pathological responses to treatment were assessed at 6 weeks post-treatment. After 17 cycles of PDT, six patients reported significant symptomatic relief and no cutaneous photosensitivity. Histopathological differences were not demonstrated, but statistically significant induction of apoptosis was seen. It can be concluded that ALA-PDT patch-based formulation is pragmatic and primarily offers symptomatic management of vulval LS and SH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitising drug and visible light causes destruction of selected cells. Due to the lack of true selectivity of preformed photosensitisers for neoplastic tissue and their high molecular weights, PDT of superficial skin lesions has traditionally been mediated by topical application of the porphyrin precursor 5-aminolevulinic acid (ALA). Objective: This article aims to review the traditional formulation-based approaches taken to topical delivery of ALA and discusses the more innovative strategies investigated for enhancement of PDT mediated by topical application of ALA and preformed photosensitisers. Methods: All of the available published print and online literature in this area was reviewed. As drug delivery of agents used in PDT is still something of an emerging field, it was not necessary to go beyond literature from the last 30 years. Results/conclusion: PDT of neoplastic skin lesions is currently based almost exclusively on topical application of simple semisolid dosage forms containing ALA or its methyl ester. Until expiry of patents on the current market-leading products, there is unlikely to be a great incentive to engage in design and evaluation of innovative formulations for topical PDT, especially those containing the more difficult-to-deliver preformed photosensitisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. Materials and Methods. Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). Results. The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. Conclusions. The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The aim was to enhance aminolevulinic acid (ALA) stability by incorporation into low-melting microparticles prepared using a spray congealing procedure and to evaluate temperature-triggered release, allowing topical bioavailability following melting at skin temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The response rate of aminolaevulinic acid (ALA)-based photodynamic therapy (PDT) in certain subtypes of actinic keratosis (AK), such as hypertrophic and hyperkeratotic lesions, is variable, an effect attributable to a supposed lack of ALA penetration. A detailed and depth-related profile of spatial ALA permeation in AK following drug administration would lead to a greater understanding of concentrations achievable before protoporphyrin IX biosynthesis and subsequent PDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aminolaevulinic acid (ALA) is known to poorly penetrate into thick lesions, such as nodular basal cell carcinomas Short chain ALA esters, possessing increased lipophilicity relative to their hydrophilic parent, have previously been shown to be highly efficient at inducing protoporphyrin IX (PpIX) production in cell culture, at equimolar concentrations. In contrast, in vitro skin permeation and in vivo animal studies, which up to now have compared prodrugs on a % w/vv basis, have failed to demonstrate such benefits For the first time, equimolar concentrations of ALA, methyl-ALA (m-ALA) and hexyl-ALA (h-ALA) have been incorporated into an o/w cream preparation. In vitro penetration studies into excised porcine skin revealed that increased levels of h-ALA, compared to ALA and m-ALA were found in the upper skin layers, at all drug loadings studied. Topical application of the formulations to nude murine skin in vivo, revealed that creams containing h-ALA induced significantly higher levels of peak PpIX fluorescence (F-max = 289.0) at low concentrations compared to m-ALA (F-max = 159.2) and ALA (F-max = 191 9). Importantly, this study indicates that when compared on an equimolar basis, h-ALA has improved skin penetration, leading to enhanced PpIX production compared to the parent drug and m-ALA (C) 2010 Wiley-Liss, Inc and the American Pharmacists Association J Pharm Sci 99 3486-3498, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The inclusion 01 chemical penetration enhancers in a novel patch-based system for the delivery of 5-aminolevulinic acid (ALA) was examined in vitro and in vivo. Poor penetration of ALA has been implicated as the primary factor for low response rates achieved with topical ALA-based photodynamic therapy of thicker neoplastic lesions. such as nodular basal cell carcinomas.