31 resultados para Technology Network
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Resumo:
The importance of accurately measuring gas diffusivity in porous materials has led to a number of methods being developed. In this study the Temporal Analysis of Products (TAP) reactor and Flux Response Technology (FRT) have been used to examine the diffusivity in the washcoat supported on cordierite monoliths. Herein, the molecular diffusion of propane within four monoliths with differently prepared alumina/CeZrOx washcoats was investigated as a function of temperature. Moment-based analysis of the observed TAP responses led to the calculation of the apparent intermediate gas constant, Kp, that characterises adsorption into the mesoporous network and apparent time delay, tapp, that characterises residence time in the mesoporous network. Additionally, FRT has been successfully adapted as an extensive in situ perturbation technique in measuring intraphase diffusion coefficients in the washcoats of the same four monolith samples. The diffusion coefficients obtained by moment-based analysis of TAP responses are larger than the coefficients determined by zero length column (ZLC) analysis of flux response profiles with measured values of the same monolith samples between 20 and 100 °C ranging from 2–5×10-9 m2 s-1 to 4–8×10-10 m2 s-1, respectively. The TAP and FRT data, therefore, provide a range of the lower and upper limits of diffusivity, respectively. The reported activation energies and diffusivities clearly correlate with the difference in the washcoat structure of different monolith samples.
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
One of the crucial aspects of disaster management of emergency situations is the early assessment of needs and damages. In most disaster situations, higher fatality and increased casualty results from lack of access to timely available emergency services rather than the initial disaster itself. This is usually caused by lack of access to the affected area in order to properly assess the situation for relevant and urgent measures. Cognitive wireless sensor networks provide an opportunity to overcome this situation especially through interconnection via mobile systems. This paper presents a cognitive wireless sensor mobile networks-based framework (CoWiSMoN), designed to offer real-time emergency services to victims and rescue personnel in event of disasters. Critical issues underlying the implementation of such a system are discussed and analyzed.
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
An overview of research on reconfigurable architectures for network processing applications within the Institute of Electronics, Communications and Information Technology (ECIT) is presented. Three key network processing topics, namely node throughput, Quality of Service (QoS) and security are examined where custom reconfigurability allows network nodes to adapt to fluctuating network traffic and customer demands. Various architectural possibilities have been investigated in order to explore the options and tradeoffs available when using reconfigurability for packet/frame processing, packet-scheduling and data encryption/decryption. This research has shown there is no common approach that can be applied. Rather the methodologies used and the cost-benefits for incorporation of reconfigurability depend on each of the functions considered, for example being well suited to encryption/decryption but not packet/frame processing. © 2005 IEEE.
Resumo:
Loss-of-mains protection is an important component of the protection systems of embedded generation. The role of loss-of-mains is to disconnect the embedded generator from the utility grid in the event that connection to utility dispatched generation is lost. This is necessary for a number of reasons, including the safety of personnel during fault restoration and the protection of plant against out-of-synchronism reclosure to the mains supply. The incumbent methods of loss-of-mains protection were designed when the installed capacity of embedded generation was low, and known problems with nuisance tripping of the devices were considered acceptable because of the insignificant consequence to system operation. With the dramatic increase in the installed capacity of embedded generation over the last decade, the limitations of current islanding detection methods are no longer acceptable. This study describes a new method of loss-of-mains protection based on phasor measurement unit (PMU) technology, specifically using a low cost PMU device of the authors' design which has been developed for distribution network applications. The proposed method addresses the limitations of the incumbent methods, providing a solution that is free of nuisance tripping and has a zero non-detection zone. This system has been tested experimentally and is shown to be practical, feasible and effective. Threshold settings for the new method are recommended based on data acquired from both the Great Britain and Ireland power systems.
Resumo:
The development of appropriate Electric Vehicle (EV) charging strategies has been identified as an effective way to accommodate an increasing number of EVs on Low Voltage (LV) distribution networks. Most research studies to date assume that future charging facilities will be capable of regulating charge rates continuously, while very few papers consider the more realistic situation of EV chargers that support only on-off charging functionality. In this work, a distributed charging algorithm applicable to on-off based charging systems is presented. Then, a modified version of the algorithm is proposed to incorporate real power system constraints. Both algorithms are compared with uncontrolled and centralized charging strategies from the perspective of both utilities and customers. © 2013 IEEE.
Resumo:
One of the challenges the tidal power industry faces, is the requirement of cost effective, reliable but highly accurate acquisition of flow data. Different methods are required , applications range over different spatial and temporal scales. This report assembles in the first sections, theoretical background information on acoustic Doppler Velocimetry and RADAR measurements. The use of existing expertise in field tests of marine vehicles is discussed next, followed by a discussion of issues relating to recreating field conditions in laboratory environments. The last three sections present practical applications of various methods performed in field conditions. While progress has been made over the last years, this overview highlights the challenges in full scale field measurements and knowledge gaps in the industry.
Resumo:
Within recent years, there has been a rapid expansion of the University's role in economic development. This has resulted in University Technology Transfer (UTT) taking place within an increasingly complex network of regional stakeholders. This complexity has resulted in quadruple helix models where the triple helix model of academia, industry and regional government now includes societal based innovation users as a fourth helix. Despite this development, extant research is fragmented and lacks coherent frameworks and conceptualisations which fully depict the dynamic and evolving nature of UTT. Accordingly, this article reviews Mode 2 UTT from a quadruple helix perspective to identify key themes to develop a research agenda which reflects progression from a triple into a quadruple helix ecosystem.