34 resultados para TRAPS
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
We introduce three compact graph states that can be used to perform a measurement-based Toffoli gate. Given a weighted graph of six, seven, or eight qubits, we show that success probabilities of 1/4, 1/2, and 1, respectively, can be achieved. Our study puts a measurement-based version of this important quantum logic gate within the reach of current experiments. As the graphs are setup independent, they could be realized in a variety of systems, including linear optics and ion traps.
Resumo:
We undertake a detailed analysis of the non-local properties of the fundamental problem of two trapped, distinguishable neutral atoms that interact with a short-range potential characterized by an s-wave scattering length. We show that this interaction generates continuous variable (CV) entanglement between the external degrees of freedom of the atoms and consider its behaviour as a function of both, the distance between the traps and the magnitude of the inter-particle scattering length. We first quantify the entanglement in the ground state of the system at zero temperature and then, adopting a phase-space approach, test the violation of the Clauser-Horn-Shimony-Holt inequality at zero and non-zero temperature and under the effects of general dissipative local environments.
Resumo:
Ultracold polar molecules, in highly anisotropic traps and interacting via a repulsive dipolar potential, may form one-dimensional chains at high densities. According to classical theory, at low temperatures there exists a critical value of the density at which a second-order phase transition from a linear to a zigzag chain occurs. We study the effect of thermal and quantum fluctuations on these self-organized structures using classical and quantum Monte Carlo methods, by means of which we evaluate the pair correlation function and the static structure factor. Depending on the parameters, these functions exhibit properties typical of a crystalline or of a liquid system. We compare the thermal and the quantum results, identifying analogies and differences. Finally, we discuss experimental parameter regimes where the effects of quantum fluctuations on the linear-zigzag transition can be observed.
Resumo:
We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.
Resumo:
Heavy metals, primarily zinc, copper, lead, and chromium, and Polycyclic Aromatic Hydrocarbons (PAHs) are the main hazardous constituents of road runoff. The main sources of these contaminants are vehicle emission, mostly through wear and leakage, although erosion of the road surface and de-icing salts are also recognised pollution sources. The bioavailability of these toxic compounds, and more importantly their potential biomagnification along food chains, could affect aquatic communities persistently exposed to road runoff. Several internationally approved abatement technologies are available for the management of road runoff on new motorway schemes. Recent studies conducted in Cork and Dublin, Ireland demonstrated the efficacy of infiltration trenches as abatement technologies in the removal of both heavy metals and PAHs prior to discharge; the technology was however inefficient in mitigating first flush events. Gully traps with sedimentation chambers, another technology investigated, demonstrated to have a substantially lower removal potential but appeared to be more effective in attenuating surges of contaminants attributed to first flush events. Consequently the employment of combined abatement techniques could efficiently minimise deviations from required effluent concentrations. The studies determined a relatively stationary accumulation of heavy metals and PAHs in sediments close to the point of discharge with a rapid decline in concentration in nearby downstream sediments (<50m). Further, Microtox® Solid Phase testing reported a negligible impact on assemblages exposed to contaminated sediments for all sites investigated. This paper describes pollutant loading from road runoff and mitigation measures from a freshwater deterioration in a water quality perspective. The results and analysis of field samples collected adjacent to a number of roads and motorways in Ireland is also presented. Finally sustainable drainage systems, abatement techniques and technologies available for onsite treatment of runoff are presented to improve and mitigate impacts of vehicular transport on the environment.
Resumo:
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential-energy curves and molecular parameters for several low-lying states of the Rb, Yb+ system. We employ both a multireference configuration interaction and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima, and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients, are estimated from our ab initio data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (ad=128.4 atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb, Rb+) channels that were carried out in our work. However, we find that the pseudopotential approximation is rather limited in validity and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
Resumo:
Quantification and speciation of volatile selenium (Se) fluxes in remote areas has not been feasible previously, due to the absence of a simple and easily transportable trapping technique that preserves speciation. This paper presents a chemo-trapping method with nitric acid (HNO3) for volatile Se species, which preserves speciation of trapped compounds. The recovery and speciation of dimethylselenide (DMSe) and dimethyl diselenide (DMDSe) entrained through both concentrated nitric acid and hydrogen peroxide (H2O2) were compared by HPLC-ICP-MS and HPLC-HG-AFS analyses. It was demonstrated that trap reproducibility was better for nitric acid and a recovery of 65.2 +/- 1.9% for DMSe and 81.3 +/- 3.9% for DMDSe was found in nitric acid traps. HPLC-ES-MS identified dimethyl selenoxide (DMSeO) as the trapped product of DMSe. Methylseleninic acid (MSA) was identified to be the single product of DMDSe trapping. These oxidized derivatives have a high stability and low volatility, which makes nitric acid a highly attractive trapping liquid for volatile Se species and enables reconstruction of the speciation of those species. The presented trapping method is simple, quantifiable, reproducible, and robust and can potentially be applied to qualitatively and quantitatively study Se volatilization in a wide range of natural environments.
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.
Resumo:
The drive towards cleaner industrial processes has led to the development of room temperature ionic liquids (RTIL) as environmentally friendly solvents. They comprise solely of ions which are liquid at room temperature and with over one million simple RTIL alone it is important to characterize their physical properties using minimal sample volumes. Here we present a dual Quartz Crystal Microbalance (QCM) which allows separate determination of viscosity and density using a total sample volume of only 240 mu L. Liquid traps were fabricated on the sensing area of one QCM using SU-8 10 polymer with a second QCM having a flat surface. Changes in the resonant frequencies were used to extract separate values for viscosity and density. Measurements of a range of pure RTIL with minimal water content have been made on five different trap designs. The best agreement with measurements from the larger volume techniques was obtained for trap widths of around 50 pm thus opening up the possibility of integration into lab-on-a-chip systems.
Resumo:
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
Resumo:
This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.