28 resultados para Surface plasmons


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The spectroscopic capability of the photon scanning tunneling microscope is exploited to study directly the launch and propagation of surface plasmons on thin silver films. Two input beams, of different wavelength, are incident through the prism in a prism-Ag film-air-fibre tip system. Both excite surface plasmons at the Ag-air interface and light of both wavelengths is coupled into the fibre probe via the respective surface plasmon evanescent fields. One laser beam is used for instrument control. The second, or probe beam is tightly focused on the sample, within the area of the unfocused or control beam, giving a well-defined and symmetrical, confined surface plasmon launch site. However, the image at the probe wavelength is highly asymmetrical in section with an exponential tail extending beyond one side of the launch site. This demonstrates in a very direct fashion;the propagation of surface plasmons; a propagation length of similar to 11.7 mu m is measured at a probe wavelength of 543.5 nm. On rough Ag films the excitation of localised scattering centres is also observed in addition to the launch of delocalised surface plasmons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we have conclusively proven that the "enhanced" optical transmission through a periodic array of sub-wavelength holes in metal films (Ebbessen's experiment) is the result of the array periodicity. This work has overturned the commonly accepted theory that the surface plasmons were responsible for the transmission enhancement. It was demonstrated that the reflectance, transmittance and frequency selectivity of the multilayered arrays can be efficiently modified by the aperture shapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to provide a novel and sensitive means for probing the growth and properties of a water meniscus on the nanometre scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to the polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nanocavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of a water bridge in other scanning probe experiments through measurement of the feedback parameter for instrument control, LESTM offers a means of continuously monitoring the development of the water bridge with sub-nanometre sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electromagnetic radiation originating with localized surface plasmons in the metal-tip/metal-sample nanocavity of a scanning tunneling microscope is demonstrated to extend to a wavelength lambda of at least 1.7 mu m. Progressive spectral extension beyond lambda similar to 1.0 mu m occurs for increasing tip radius above similar to 15 nm, reaching lambda similar to 1.7 mu m for tip radius similar to 100 nm; these observations are corroborated by use of a simple physical model that relates the discrete plasmon mode frequencies to the tip radius. This spectral extension opens up a new regime for scanning tunneling microscope-based optical spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mid-infrared optical response of c-axis thin films of YBa2Cu3O7-delta has been studied using Otto-configuration attenuated total reflectance. The measured reflectance-angle characteristics are dominated by a strong absorption feature due to the excitation of surface plasmons, and can be modeled to determine the a-b plane dielectric function. The results show that while epsilon(i,) and therefore sigma(r), are temperature independent, \epsilon(r)\ exhibits a moderate decrease with generalized Drude analysis shows that the plasma frequency is independent of temperature, but decreases with decreasing doping. The scattering rate increases with temperature, and also increases with decreasing doping, consistent with stronger coupling in the underdoped regime. The mass-enhancement is small but increases to 30-40% at delta = 0.6. Difficulties in reconciling the results with some current theories of high-T-c materials are discussed. Finally, the surface plasmon propagation lengths and penetration depths are shown to vary systematically with doping. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The a-b plane dielectric function (epsilon) of c-axis YBa2Cu3O7-delta thin films with T-c > 85 K was measured at lambda = 3.392 mum in the temperature range 85-300 It, using an attenuated total reflectance (ATR) technique based on the excitation of surface plasmons, The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant to temperature within experimental uncertainties. Typical values are epsilon (ab) = -23 + 16.5i at similar to 295 R and epsilon (ab) = -27 + 15.5i at similar to 90 K. A generalised Drude analysis yields effective scattering rates (1/tau*) that increase with temperature from similar to 1500 to similar to 1900 cm(-1). The temperature dependent rates best fit an equation of the form 1/tau* = a + bT(alpha) with alpha = 1.46 +/- 0.40. The effective plasma frequencies of w(p)* similar to 18,500 cm(-1) are almost independent of temperature. The uniquely detailed temperature dependence of the results confirm and consolidate data obtained by other groups using normal reflectance methods, but contradict our previously published ATR measurements. Technical shortcomings in the earlier work are identified as the source of the discrepancy. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events(1-4). Despite undisputed advantages, including spectral tunability(3), strong enhancement of the local electric field(5,6) and much better adaptability to modern nanobiotechnology architectures(7), localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts(3). Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Otto configuration attenuated total reflection (ATR) measurements of the excitation of surface plasmons in the infrared have been carried out on YBCO films deposited on MgO (100) substrates. The dielectric constants for YBCO at 3.392 mu m are determined to be -10 + 15i for c-axis material. The anisotropic nature of the cuprate is seen from films with other orientations: nearly a-axis material has constants of 4.0 + 7.0i. It is thus not metallic in its optical response along the c-axis which lies parallel to the substrate plane. Ellipsometric measurements in the visible on c-axis material point to a maximum surface plasmon energy of 1 eV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monte Carlo calculations of quantum yield in PtSi/p-Si infrared detectors are carried out taking into account the presence of a spatially distributed barrier potential. In the 1-4 mu m wavelength range it is found that the spatial inhomogeneity of the barrier has no significant effect on the overall device photoresponse. However, above lambda = 4.0 mu m and particularly as the cut-off wavelength (lambda approximate to 5.5 mu m) is approached, these calculations reveal a difference between the homogeneous and inhomogeneous barrier photoresponse which becomes increasingly significant and exceeds 50% at lambda = 5.3 mu m. It is, in fact, the inhomogeneous barrier which displays an increased photoyield, a feature that is confirmed by approximate analytical calculations assuming a symmetric Gaussian spatial distribution of the barrier. Furthermore, the importance of the silicide layer thickness in optimizing device efficiency is underlined as a trade-off between maximizing light absorption in the silicide layer and optimizing the internal yield. The results presented here address important features which determine the photoyield of PtSi/Si Schottky diodes at energies below the Si absorption edge and just above the Schottky barrier height in particular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The light output from nominally smooth Al-Ox-Au tunnel junctions is observed to be substantially independent of the deposition rate of the Au film electrode. Films deposited quickly (2 nm s-1) and those deposited slowly (0.16 nm s-1) have similar spectral dependences and intensities. (This is in contrast to roughened films where those deposited quickly give out less light, especially towards the blue end of the spectrum.) The behaviour can be interpreted in terms of the ratio l(ph)/l(em) where l(ph) and l(em) are the mean free paths of surface plasmons between external photon emissions and internal electromagnetic absorptions respectively. Once l(ph)/l(em) exceeds 100, as it does on smooth films, grain size has little further effect on the spectral shape of the light output. In fast-deposited films there are two compensating effects on the output intensity: grain boundary scattering decreases it and greater surface roughness increases it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Placing metallic nanoparticles inside cavities, rather than in dimers, greatly improves their plasmonic response. Such particle-in-cavity (PIC) hybrid architectures are shown to produce extremely strong field enhancement at the particle cavity junctions, arising from the cascaded focusing of large optical cross sections into small gaps. These simply constructed PIC structures produce the strongest field enhancement for coupled nanoparticles, up to 90% stronger than for a dimer. The coupling is found to follow a universal power law with particle surface separation, both for field enhancements and resonant wavelength shifts. Significantly enhanced Raman signals are experimentally observed for molecules adsorbed in such PIC structures, in quantitive agreement with theoretical calculations. PIC architectures may have important implications in many applications, such as reliable single molecule sensing and light harvesting in plasmonic photovoltaic devices.