43 resultados para Stress intensity factor (SIF)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hyperglycaemia is a well recognized pathogenic factor of long term complications in diabetes mellitus. Hyperglycaemia not only generates reactive oxygen species but also attenuates antioxidant mechanisms creating a state of oxidative stress. Methods: Porcine mesangial cells were cultured in high glucose (HG) for ten days to investigate the effects on the antioxidant defences of the cell. Results: Mesangial cells cultured in HG conditions had significantly reduced levels of glutathione (GSH) compared with those grown in normal glucose (NG). The reduced GSH levels were accompanied by decreased gene expression of both subunits of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in de novo synthesis of GSH. Elevated levels of intracellular malondialdehyde (MDA) were found in cells exposed to HG conditions. HG also caused elevated mRNA levels of the antioxidant enzymes CuZn superoxide dismutase (SOD) and MnSOD. These changes were accompanied by increased mRNA levels of extracellular matrix proteins (ECM), fibronectin (FN) and collagen IV (CIV). Addition of antioxidants to high glucose caused a significant reversal of FN and CIV gene expression; alpha-lipoic acid also upregulated gamma-GCS gene expression and restored intracellular GSH and MDA levels. Conclusions: We have demonstrated the existence of glucose induced-oxidative stress in mesangial cells as evidenced by elevated MDA and decreased GSH levels. The decreased levels of GSH are as a result of decreased mRNA expression of gamma-GCS within the cell. Antioxidants caused a significant reversal of FN and CIV gene expression suggesting an aetiological link between oxidative stress and increased ECM protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany. Osmotic stress was found to induce biofilm formation in a Staphylococcus aureus mucosal isolate. Inactivation of a global regulator of the bacterial stress response, the alternative transcription factor sigma(B), resulted in a biofilm-negative phenotype and loss of salt-induced biofilm production. Complementation of the mutant strain with an expression plasmid encoding sigma(B) completely restored the wild-type phenotype. The combined data suggest a critical role of sigma(B) in S. aureus biofilm regulation under environmental stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested the psychometric properties of a questionnaire that measured sources of distress and eustress, or good stress, in nursing students. The Transactional model of stress construes stress in these different ways and is frequently used to understand sources of stress, coping and stress responses. Limited research has attempted to measure sources of distress and eustress or sources that can potentially enhance performance and well-being. A volunteer sample of final year nursing students (n = 120) was surveyed in the United Kingdom in 2007. The questionnaire measured sources of stress and measures of psychological well-being were taken to test construct validity. This was tested through an exploratory factor analysis. This reduced the questionnaire from 49 to 29 items and suggested three factors: learning and teaching, placement related and course organization; second, it was analysed by testing the assumptions of the Transactional model, the model on which the questionnaire was based. In line with the assumptions of the model, measures of distress related to adverse well-being, and measures of eustress related to healthier well-being responses. The test–retest reliability estimate was 0.8. While certain programme issues were associated with distress, placement-related experiences were the most important source of eustress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-113), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappa B activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and down-stream inflammatory pathways. AGE-R3 may protect against these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims

Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here.
Methods and results

Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores.
Conclusions

Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Neovascularization occurs in response to tissue ischemia and growth factor stimulation. In ischemic retinopathies, however, new vessels fail to restore the hypoxic tissue; instead, they infiltrate the transparent vitreous. In a model of oxygen-induced retinopathy (OIR), TNFa and iNOS, upregulated in response to tissue ischemia, are cytotoxic and inhibit vascular repair. The aim of this study was to investigate the mechanism for this effect.

Methods. Wild-type C57/BL6 (WT) and TNFa-/- mice were subjected to OIR by exposure to 75% oxygen (postnatal days 7–12). The retinas were removed during the hypoxic phase of the model. Retinal cell death was determined by TUNEL staining, and the microglial cells were quantified after Z-series capture with a confocal microscope. In situ peroxynitrite and superoxide were measured by using the fluorescent dyes DCF and DHE. iNOS, nitrotyrosine, and arginase were analyzed by real-time PCR, Western blot analysis, and activity determined by radiolabeled arginine conversion. Astrocyte coverage was examined after GFAP immunostaining.

Results. The TNFa-/- animals displayed a significant reduction in TUNEL-positive apoptotic cells in the inner nuclear layer of the avascular retina compared with that in the WT control mice. The reduction coincided with enhanced astrocytic survival and an increase in microglial cells actively engaged in phagocytosing apoptotic debris that displayed low ROS, RNS, and NO production and high arginase activity.

Conclusions. Collectively, the results suggest that improved vascular recovery in the absence of TNFa is associated with enhanced astrocyte survival and that both phenomena are dependent on preservation of microglial cells that display an anti-inflammatory phenotype during the early ischemic phase of OIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow patterns in a high shear granulator depend on the fill volume. For example, DEM simulations reported by Terashita et al. [1] show that fill volume affects the velocities and kinetic energies of the particles. It also influences the granule size distribution [2]. Here the effects on the properties of the granule are described. The total mass of the granulate material was varied without changing the other variables such as impeller speed, granulation time and liquid to solid ratio. The resulting mechanical properties, such as strength, yield stress and Young's modulus, of the granules were measured. For the materials studied in the current work, increasing the fill factor (batch size) increased the values of these material parameters. This could be explained by the relative increase in the number and intensity of collisions between the particles, when the size of a batch was increased, leading to smaller porosities. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Published work assessing psychosocial stress (job strain) as a risk factor for coronary heart disease is inconsistent and subject to publication bias and reverse causation bias. We analysed the relation between job strain and coronary heart disease with a meta-analysis of published and unpublished studies. METHODS: We used individual records from 13 European cohort studies (1985-2006) of men and women without coronary heart disease who were employed at time of baseline assessment. We measured job strain with questions from validated job-content and demand-control questionnaires. We extracted data in two stages such that acquisition and harmonisation of job strain measure and covariables occurred before linkage to records for coronary heart disease. We defined incident coronary heart disease as the first non-fatal myocardial infarction or coronary death. FINDINGS: 30?214 (15%) of 197?473 participants reported job strain. In 1·49 million person-years at risk (mean follow-up 7·5 years [SD 1·7]), we recorded 2358 events of incident coronary heart disease. After adjustment for sex and age, the hazard ratio for job strain versus no job strain was 1·23 (95% CI 1·10-1·37). This effect estimate was higher in published (1·43, 1·15-1·77) than unpublished (1·16, 1·02-1·32) studies. Hazard ratios were likewise raised in analyses addressing reverse causality by exclusion of events of coronary heart disease that occurred in the first 3 years (1·31, 1·15-1·48) and 5 years (1·30, 1·13-1·50) of follow-up. We noted an association between job strain and coronary heart disease for sex, age groups, socioeconomic strata, and region, and after adjustments for socioeconomic status, and lifestyle and conventional risk factors. The population attributable risk for job strain was 3·4%. INTERPRETATION: Our findings suggest that prevention of workplace stress might decrease disease incidence; however, this strategy would have a much smaller effect than would tackling of standard risk factors, such as smoking. FUNDING: Finnish Work Environment Fund, the Academy of Finland, the Swedish Research Council for Working Life and Social Research, the German Social Accident Insurance, the Danish National Research Centre for the Working Environment, the BUPA Foundation, the Ministry of Social Affairs and Employment, the Medical Research Council, the Wellcome Trust, and the US National Institutes of Health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Family caregivers play a vital role in maintaining the lives of individuals with advanced illness living in the community. However, the responsibility of caregiving for an end-of-life family member can have profound consequences on the psychological, physical and financial well-being of the caregiver. While the literature has identified caregiver stress or strain as a complex process with multiple contributing factors, few comprehensive studies exist. This study examined a wide range of theory-driven variables contributing to family caregiver stress. Method: Data variables from interviews with primary family caregivers were mapped onto the factors within the Stress Process Model theoretical framework. A hierarchical multiple linear regression analysis was used to determine the strongest predictors of caregiver strain as measured by a validated composite index, the Caregiver Strain Index. Results: The study included 132 family caregivers across south-central/western Ontario, Canada. About half of these caregivers experienced high strain, the extent of which was predicted by lower perceived program accessibility, lower functional social support, greater weekly amount of time caregivers committed to the care recipient, younger caregiver age and poorer caregiver self-perceived health. Conclusion: This study examined the influence of a multitude of factors in the Stress Process Model on family caregiver strain, finding stress to be a multidimensional construct. Perceived program accessibility was the strongest predictor of caregiver strain, more so than intensity of care, highlighting the importance of the availability of community resources to support the family caregiving role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis [1,2], EGFR targeted therapies have achieved limited clinical efficacy [3]. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction [4,5]. A directed RNAi screen revealed that glioblastoma cells overexpressing EGFRvIII [6], an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII overexpression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyperactivation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes.