43 resultados para Steel design


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parametric study of cold-formed steel sections with web openings subjected to web crippling under end-one-flange (EOF) loading condition is undertaken, using finite element analysis, to investigate the effects of web holes and cross-section sizes. The holes are located either centred above the bearing plates or with a horizontal clear distance to the near edge of the bearing plates. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, the ratio of the length of bearing plates to the flat depth of the web and the location of the holes as defined by the distance of the hole from the edge of the bearing plate divided by the flat depth of web. In this study, design recommendations in the form of web crippling strength reduction factor equations are proposed, which are conservative when compared with the experimental and finite element results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents design recommendations for the strength of cold-formed steel angle structs. The work was part funded by the Carnegie Trust and is co-authored by academics from Hong-Kong University. The work has led to a collaboration with the University of Malaya, attempting to predict the strength using artificial neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the design of cold-formed steel portal frames it is essential that joint flexibility is taken into account in frame analysis. This paper describes optimisation of the joint detail of a cold-formed steel portal frame, conducted concurrently with frame analysis. It is one of the outputs of an Industrial CASE award on the design of cold-formed steel portal frames, which is being used to support a KTP application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour and design of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, is considered. The particular problem of the moment-capacity of such joints being lower than that of the cold-formed steel sections being connected because of web buckling, caused by the concentration of load transfer from the bolts, is addressed. In this paper, a combination of laboratory tests and finite element analyses is used to investigate this mode of failure. It is demonstrated that there is good agreement between the measured ultimate moment-capacity and that predicted by using the finite element method. A parametric study conducted using the finite element model shows that the moment-capacity of a practical size joint can be up to 20% lower than that of the cold-formed steel sections being connected. Web buckling so-caused must therefore be considered in the design of such connections. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigations at ambient temperature into the behaviour of bolted moment-connections between cold-formed steel members have previously been described. Full-scale joint tests have demonstrated that the channel-sections being connected are susceptible to premature failure, the result of web buckling caused by the concentration of load transfer from the bolts. The results of tests on bolted lap joints have been used to propose design recommendations for the shear strength in bearing of the bolt-hole. For both types of test, the results of non-linear elasto-plastic finite element analyses have been shown to have good agreement. No consideration, however, has been given to the behaviour of such connections at elevated temperatures. This paper describes non-linear elasto-plastic finite element parametric studies into the effects of elevated temperatures on bolted moment-connections between cold-formed steel members. Two issues at elevated temperatures are investigated:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of composite asymmetric cellular beams is not fully covered by existing guidance but is an area of important practical application. Asymmetry in the shape of the cross-section of cellular beams causes development of additional bending moments in the web-posts between closely placed openings. Furthermore, the development of local composite action influences the distribution of forces in the web-flange Tees. The design method presented in this paper takes account of high degrees of asymmetry in the cross-section and also the influence of elongated or rectangular openings.