108 resultados para Soft real-time distributed systems
Resumo:
Pre-processing (PP) of received symbol vector and channel matrices is an essential pre-requisite operation for Sphere Decoder (SD)-based detection of Multiple-Input Multiple-Output (MIMO) wireless systems. PP is a highly complex operation, but relative to the total SD workload it represents a relatively small fraction of the overall computational cost of detecting an OFDM MIMO frame in standards such as 802.11n. Despite this, real-time PP architectures are highly inefficient, dominating the resource cost of real-time SD architectures. This paper resolves this issue. By reorganising the ordering and QR decomposition sub operations of PP, we describe a Field Programmable Gate Array (FPGA)-based PP architecture for the Fixed Complexity Sphere Decoder (FSD) applied to 4 × 4 802.11n MIMO which reduces resource cost by 50% as compared to state-of-the-art solutions whilst maintaining real-time performance.
Resumo:
We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.
Resumo:
This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.
Resumo:
NanoStreams explores the design, implementation,and system software stack of micro-servers aimed at processingdata in-situ and in real time. These micro-servers can serve theemerging Edge computing ecosystem, namely the provisioningof advanced computational, storage, and networking capabilitynear data sources to achieve both low latency event processingand high throughput analytical processing, before consideringoff-loading some of this processing to high-capacity datacentres.NanoStreams explores a scale-out micro-server architecture thatcan achieve equivalent QoS to that of conventional rack-mountedservers for high-capacity datacentres, but with dramaticallyreduced form factors and power consumption. To this end,NanoStreams introduces novel solutions in programmable & con-figurable hardware accelerators, as well as the system softwarestack used to access, share, and program those accelerators.Our NanoStreams micro-server prototype has demonstrated 5.5×higher energy-efficiency than a standard Xeon Server. Simulationsof the microserver’s memory system extended to leveragehybrid DDR/NVM main memory indicated 5× higher energyefficiencythan a conventional DDR-based system.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
Monitoring multiple myeloma patients for relapse requires sensitive methods to measure minimal residual disease and to establish a more precise prognosis. The present study aimed to standardize a real-time quantitative polymerase chain reaction (PCR) test for the IgH gene with a JH consensus self-quenched fluorescence reverse primer and a VDJH or DJH allele-specific sense primer (self-quenched PCR). This method was compared with allele-specific real-time quantitative PCR test for the IgH gene using a TaqMan probe and a JH consensus primer (TaqMan PCR). We studied nine multiple myeloma patients from the Spanish group treated with the MM2000 therapeutic protocol. Self-quenched PCR demonstrated sensitivity of >or=10(-4) or 16 genomes in most cases, efficiency was 1.71 to 2.14, and intra-assay and interassay reproducibilities were 1.18 and 0.75%, respectively. Sensitivity, efficiency, and residual disease detection were similar with both PCR methods. TaqMan PCR failed in one case because of a mutation in the JH primer binding site, and self-quenched PCR worked well in this case. In conclusion, self-quenched PCR is a sensitive and reproducible method for quantifying residual disease in multiple myeloma patients; it yields similar results to TaqMan PCR and may be more effective than the latter when somatic mutations are present in the JH intronic primer binding site.
Resumo:
The BlackEnergy malware targeting critical infrastructures has a long history. It evolved over time from a simple DDoS platform to a quite sophisticated plug-in based malware. The plug-in architecture has a persistent malware core with easily installable attack specific modules for DDoS, spamming, info-stealing, remote access, boot-sector formatting etc. BlackEnergy has been involved in several high profile cyber physical attacks including the recent Ukraine power grid attack in December 2015. This paper investigates the evolution of BlackEnergy and its cyber attack capabilities. It presents a basic cyber attack model used by BlackEnergy for targeting industrial control systems. In particular, the paper analyzes cyber threats of BlackEnergy for synchrophasor based systems which are used for real-time control and monitoring functionalities in smart grid. Several BlackEnergy based attack scenarios have been investigated by exploiting the vulnerabilities in two widely used synchrophasor communication standards: (i) IEEE C37.118 and (ii) IEC 61850-90-5. Specifically, the paper addresses reconnaissance, DDoS, man-in-the-middle and replay/reflection attacks on IEEE C37.118 and IEC 61850-90-5. Further, the paper also investigates protection strategies for detection and prevention of BlackEnergy based cyber physical attacks.
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.
Resumo:
Background. Invasive Candida infection among nonneutropenic, critically ill adults is a clinical problem that has received increasing attention in recent years. Poor performance of extant diagnostic modalities has promoted risk-based, preemptive prescribing in view of the poor outcomes associated with inadequate or delayed antifungal therapy; this risks unnecessary overtreatment. A rapid, reliable diagnostic test could have a substantial impact on therapeutic practice in this patient population.
Methods. Three TaqMan-based real-time polymerase chain reaction assays were developed that are capable of detecting the main medically important Candida species, categorized according to the likelihood of fluconazole susceptibility. Assay 1 detected Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Assays 2 and 3 detected Candida glabrata and Candida krusei, respectively. The clinical performance of these assays, applied to serum, was evaluated in a prospective trial of nonneutropenic adults in a single intensive care unit.
Results. In all, 527 specimens were obtained from 157 participants. All 3 assays were run in parallel for each specimen; they could be completed within 1 working day. Of these, 23 specimens were obtained from 23 participants categorized as having proven Candida infection at the time of sampling. If a single episode of Candida famata candidemia was excluded, the estimated clinical sensitivity, specificity, and positive and negative predictive values of the assays in this trial were 90.9%, 100%, 100% and 99.8%, respectively.
Conclusions. These data suggest that the described assays perform well in this population for enhancing the diagnosis of candidemia. The extent to which they may affect clinical outcomes, prescribing practice, and cost-effectiveness of care remains to be ascertained.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.