20 resultados para Sex chromosome system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex and genetic variation influence the risk of developing diabetic nephropathy and ESRD in patients with type 1 diabetes. We performed a genome-wide association study in a cohort of 3652 patients from the Finnish Diabetic Nephropathy (FinnDiane) Study with type 1 diabetes to determine whether sex-specific genetic risk factors for ESRD exist. A common variant, rs4972593 on chromosome 2q31. 1, was associated with ESRD in women (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex hormone binding globulin (SHBG) is a glycoprotein composed of two 373-amino-acid subunits. The SHBG gene and a promotor region have been identified. The SHBG receptor has yet to be cloned but is known to act through a G-protein-linked second-messenger system following plasma membrane binding. The principal function of SHBG has traditionally been considered to be that of a transport protein for sex steroids, regulating circulating concentrations of free (unbound) hormones and their transport to target tissues. Recent research suggests that SHBG has functions in addition to the binding and transport of sex steroids. Observational studies have associated a low SHBG concentration with an increased incidence of type 2 diabetes mellitus (DM) independent of sex hormone levels in men and women. Genetic studies using Mendelian randomization analysis linking three single nucleotide polymorphisms of the SHBG gene to risk of developing type 2 DM suggest SHBG may have a role in the pathogenesis of type 2 DM. The correlation between SHBG and insulin resistance that is evident in a number of cross-sectional studies is in keeping with the suggestion that the association between SHBG and incidence of type 2 DM is explained by insulin resistance. Several potential mechanisms may account for this association, including the identification of dietary factors that influence SHBG gene transcription. Further research to characterize the SHBG-receptor and the SHBG second messenger system is required. An interventional study examining the effects on insulin resistance of altering SHBG concentrations may help in determining whether this association is causal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a case study of a female who received an allogeneic bone marrow transplantation (BMT) from a sex-mismatched related donor and who, after a twenty-year interval, developed an acute fulminant biopsy-proven demyelinating disorder of cerebral white matter which followed a remitting-relapsing chronic course. In situ hybridization studies using Y-chromosome-specific markers revealed Y-chromosome-positive mononuclear cells in biopsy samples of white matter. Magnetic resonance imaging (MRI) studies of the asymptomatic healthy male donor showed multiple white matter lesions. These observations suggest that donor lymphocytes were sensitized to central nervous system (CNS) antigens prior to or at the time of transplantation but remained dormant for 20 years before becoming activated to cause widespread demyelination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed chimerism may occur more frequently than previously thought following allogeneic bone marrow transplantation and may have implications in terms of relapse, graft-versus-host disease and immune reconstitution. DNA analysis using single or multilocus polymorphic probes cannot reliably discriminate between donor and recipient cells below a level of 10%. We used probe pHY2.1, a cloned segment of tandemly repeated DNA (2000 copies) on the long arm of chromosome Y. A dot blot procedure allowed us to immobilize DNA directly from 50 microliter of peripheral blood or bone marrow. Cross-reactivity was eliminated by hybridization at conditions of extreme stringency (65 degrees C, 50% formamide). Mixing experiments detected male DNA at a level of 0.1% after 10 h exposure. Five patients were studied serially post-bone marrow transplantation. One patient showed mixed chimerism for 12 months, one had complete autologous recovery and the remaining three showed complete engraftment. All results were verified by standard karyotyping on bone marrow cells. This technique is a simple, rapid and sensitive assay for chimerism following sex mismatched bone marrow transplantation.