41 resultados para Serial-correlation common features
Resumo:
A simple linear precoding technique is proposed for multiple input multiple output (MIMO) broadcast systems using phase shift keying (PSK) modulation. The proposed technique is based on the fact that, on an instantaneous basis, the interference between spatial links in a MIMO system can be constructive and can contribute to the power of the useful signal to improve the performance of signal detection. In MIMO downlinks this co-channel interference (CCI) can be predicted and characterised prior to transmission. Contrary to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to influence the interference and benefit from it, thus gaining advantage from energy already existing in the communication system that is left unexploited otherwise. The proposed precoding aims at adaptively rotating, rather than zeroing, the correlation between the MIMO substreams depending on the transmitted data, so that the signal of interfering transmissions is aligned to the signal of interest at each receive antenna. By doing so, the CCI is always kept constructive and the received signal to interference-plus-noise ratio (SINR) delivered to the mobile units (MUs) is enhanced without the need to invest additional signal power per transmitted symbol at the MIMO base station (BS). It is shown by means of theoretical analysis and simulations that the proposed MIMO precoding technique offers significant performance and throughput gains compared to its conventional counterparts.
Resumo:
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 and TSC2 genes on chromosomes 9 and 16 respectively. Diagnosis is based on clinical features but can be difficult as a result of variable phenotypic expression. With the advantage of mutation analysis in making a diagnosis of TSC, and improved identification of the associated clinical features, there have been few new data on its prevalence and on the proportion of cases due to new mutations. We have performed a retrospective epidemiological study on the prevalence of TSC, the clinical features attributed to it, and the availability of mutational analysis. We identified 73 known patients with TSC (5 deceased): 39 were female and 34 male. Ages ranged from 10 months to 69 years, with a mean age of 27 years 11 months (SD 16y 10mo). The point prevalence of TSC in our study was estimated at I out of 24 956 on the prevalence day (30 April 2004). The majority of patients (42.5%) were diagnosed at less than 15 months of age; 25% were not given a diagnosis on first developing symptoms. In all, 93.2% had epilepsy and 71.2% had a learning disability.* A mutation was identified in 95.8% of those tested (26% TSC1 and 74% TSC2). TSC2 mutations were correlated with a more severe phenotype. The new mutation rate was calculated at 64%. We conclude that the prevalence of TSC is higher than previously calculated. We recommend that all children with epilepsy be assessed for features of TSC. Larger studies will be required to assess the prevalence of mutations in each gene, and genotype-phenotype correlation.
Resumo:
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral ernission beyond 6500 A. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of object. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light Curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.
Resumo:
This paper presents an approach which enables new parameters to be added to a CAD model for optimization purposes. It aims to remove a common roadblock to CAD based optimization, where the parameterization of the model does not offer the shape sufficient flexibility for a truly optimized shape to be created. A technique has been developed which uses adjoint based sensitivity maps to predict
the sensitivity of performance to the addition to a model of four different feature types, allowing the feature providing the greatest benefit to be selected. The optimum position to add the feature is also discussed. It is anticipated that the approach could be used to iteratively add features to a model, providing greater flexibility to the shape of the model, and allowing the newly-added parameters to be used as design variables in a subsequent shape optimization.
Resumo:
We study quantum correlations in an isotropic Ising ring under the effects of a transverse magnetic field. After characterizing the behavior of two-spin quantum correlations, we extend our analysis to global properties of the ring, using a figure of merit for quantum correlations that shows enough sensitivity to reveal the drastic changes in the properties of the system at criticality. This opens up the possibility to relate statistical properties of quantum many-body systems to suitably tailored measures of quantum correlations that capture features going far beyond standard quantum entanglement.
Resumo:
A review of medical records of 45 of 53 hospitalised patients with positive cultures for CTX-M type ESBL-producing Escherichia coli between 01 January and 31 May 2004 was conducted. The mean age of the population studied was 73.1 (+/-14.6) years and the majority (55.6%) had been under the care of the internal medicine or elderly care service. In the majority (77.8%) of instances the isolate was attributed to a clinical infection rather than colonisation and the commonest clinical specimen to yield the organism was urine, which was positive in 57.8% of patients. Acquisition of the organism was categorised as nosocomial in 68.9% of patients; in this subgroup, the median duration of inpatient stay prior to recovery of the organism was 24 (range 3-240) days. Haemodialysis-dependence was the most common of the comorbidities evaluated. The mean number of antibiotics prescribed per patient in the 30 days prior to first isolation of the organism was 1.7 (range 0-4). Furthermore, the mean number of antibiotic-days exposure per patient during this period was 13.9 (range 0-48). The most frequently received class of antibiotic was beta-lactam/beta-lactamase inhibitor combinations. Of 35 infections, 26 (74.2%) were successfully treated. Overall 12 patients with infection died (34.3%); attributable mortality was presumed in seven (20%).
Resumo:
A bit level systolic array system is proposed for the Winograd Fourier transform algorithm. The design uses bit-serial arithmetic and, in common with other systolic arrays, features nearest-neighbor interconnections, regularity and high throughput. The short interconnections in this method contrast favorably with the long interconnections between butterflies required in the FFT. The structure is well suited to VLSI implementations. It is demonstrated how long transforms can be implemented with components designed to perform a short length transform. These components build into longer transforms preserving the regularity and structure of the short length transform design.
Resumo:
A bit-level systolic array system is proposed for the Winograd Fourier transform algorithm. The design uses bit-serial arithmetic and, in common with other systolic arrays, features nearest neighbor interconnections, regularity, and high throughput. The short interconnections in this method contrast favorably with the long interconnections between butterflies required in the FFT. The structure is well suited to VLSI implementations. It is demonstrated how long transforms can be implemented with components designed to perform short-length transforms. These components build into longer transforms, preserving the regularity and structure of the short-length transform design.
Resumo:
The standard local density approximation and generalized gradient approximations fail to properly describe the dissociation of an electron pair bond, yielding large errors (on the order of 50 kcal/mol) at long bond distances. To remedy this failure, a self-consistent Kohn-Sham (KS) method is proposed with the exchange-correlation (xc) energy and potential depending on both occupied and virtual KS orbitals. The xc energy functional of Buijse and Baerends [Mol. Phys. 100, 401 (2002); Phys. Rev. Lett. 87, 133004 (2001)] is employed, which, based on an ansatz for the xc-hole amplitude, is able to reproduce the important dynamical and nondynamical effects of Coulomb correlation through the efficient use of virtual orbitals. Self-consistent calculations require the corresponding xc potential to be obtained, to which end the optimized effective potential (OEP) method is used within the common energy denominator approximation for the static orbital Green's function. The problem of the asymptotic divergence of the xc potential of the OEP when a finite number of virtual orbitals is used is addressed. The self-consistent calculations reproduce very well the entire H-2 potential curve, describing correctly the gradual buildup of strong left-right correlation in stretched H-2. (C) 2003 American Institute of Physics.
Resumo:
Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.
Resumo:
We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 Å line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction. © 2012. The American Astronomical Society. All rights reserved..
Resumo:
Background/aims - Epiretinal and retrolental proliferation may occur during prolonged use of the novel tamponade agent perfluorohexyloctane (F H ). This study aims to determine whether there is any histological evidence that F H has a role in the formation of these membranes. Methods - Eight epiretinal membranes and three opaque posterior lens capsules were excised from patients in whom F H had been used as a long term retinal tamponade agent. The membranes and capsules were examined employing light microscopic methods, including immunohistochemistry. Results - The epiretinal membranes showed histological features typical of proliferative vitreoretinopathy (PVR) epiretinal membranes, but they also exhibited a dense macrophagic infiltration. In addition, three of the membranes contained multinucleated cells. Macrophages represented up to 30% of the cells present and appeared to contain large intracytoplasmic vacuoles. Similar cells were seen on the back of the posterior lens capsule in one specimen and all three capsules had posterior migration of lens epithelium. Conclusion - The pathological findings are not simply those of PVR. The macrophage infiltration suggests that there may be a biological reaction to F H which could reflect its surmised propensity to emulsify. Further investigations concerning the cellular response to this promising tamponade agent are warranted.
Resumo:
Both ice and silica crystallize into solid-state structures composed of tetrahedral building units that are joined together to form an infinite four-connected net. Mathematical considerations suggest that there is a vast number of such nets and thus potential crystal structures. It is therefore perhaps surprising to discover that, despite the differences in the nature of interatomic interactions in these materials, a fair number of commonly observed ice and silica phases are based on common nets. Here we use computer simulation to investigate the origin of this symmetry between the structures formed for ice and silica and to attempt to understand why it is not complete. We start from a comparison of the dense phases and then move to the relationship between the different open (zeolitic and clathratic) structures formed for both materials. We show that there is a remarkably strong correlation between the energetics of isomorphic silica and water ice structures and that this correlation arises because of the strong link between the total energy of a material and its local geometric features. Finally, we discuss a number of as yet unsynthesized low-energy structures which include a phase of ice based on quartz, a silica based on the structure of ice VI, and an ice clathrate that is isomorphic to the silicate structure nonasil.
Resumo:
The aim of this study was to develop a mutation screening protocol for familial hypercholesterolaemia (FH) patients and to assess genotype/phenotype effects in terms of pre-treatment lipid profiles and presentation of tendon xanthomata (TX). A total of 158 families with clinical definitions of possible (120) or definite (38) FH were studied using a tiered screening protocol. Mutations were identified in 52 families, 44 families showing 23 different LDLR gene defects and eight families showing the common Apo B100 gene defect R3500Q. LDLR defects were detected in various regions of the gene with 56% in the LDL binding domain (exons 2-6) and 37% in the EGF precursor homology domain (exons 7-14). The most common mutations were D461N(7), C210X(5), 932delA(5), and C163Y(4). Frameshift mutations accounted for 20% with nonsense 13%, mis-sense 35%, splice 3%, Apo B 13% and 2% large deletion, 13% of clinically definite FH remained undefined. In conclusion, DNA based diagnosis is possible in 79% (30/38) of clinically definite FH families and of the 120 possible FH families at the start of the screening program, 18% (22/120) now have defined mutations. Overall 60 families from the original 158 meet the clinical and/or genetic criteria for definite FH. Tendon xanthomata were present in only 58% (30/52) of genetically defined FH families, thus limiting its use as a strict diagnostic criteria. Families with low density lipoprotein receptor (LDLR) defects present with higher total and LDL cholesterol levels and a higher incidence of TX than do those with the common Apo B variant, and frameshift mutations appear to have the most severe presentation. Copyright (C) 1999 Elsevier Science Ireland Ltd.
Resumo:
For the first time in this paper we present results showing the effect of speaker head pose angle on automatic lip-reading performance over a wide range of closely spaced angles. We analyse the effect head pose has upon the features themselves and show that by selecting coefficients with minimum variance w.r.t. pose angle, recognition performance can be improved when train-test pose angles differ. Experiments are conducted using the initial phase of a unique multi view Audio-Visual database designed specifically for research and development of pose-invariant lip-reading systems. We firstly show that it is the higher order horizontal spatial frequency components that become most detrimental as the pose deviates. Secondly we assess the performance of different feature selection masks across a range of pose angles including a new mask based on Minimum Cross-Pose Variance coefficients. We report a relative improvement of 50% in Word Error Rate when using our selection mask over a common energy based selection during profile view lip-reading.