120 resultados para Semigroups of Operators
Resumo:
Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.
Resumo:
Several methods based on an easy geometric argument are provided to prove that a given operator is not weakly supercyclic. The methods apply to different kinds of operators like composition operators or bilateral weighted shifts. In particular, it is shown that the classical Volterra operator is not weakly supercyclic on any of the LP [0, 1] spaces, 1
Resumo:
We provide a sufficient condition of analyticity of infinitely differentiable eigenfunctions of operators of the form Uf(x) = integral a(x, y) f(b( x, y)) mu(dy) acting on functions f: [u, v] --> C ( evolution operators of one-dimensional dynamical systems and Markov processes have this form). We estimate from below the region of analyticity of the eigenfunctions and apply these results for studying the spectral properties of the Frobenius-Perron operator of the continuous fraction Gauss map. We prove that any infinitely differentiable eigenfunction f of this Frobenius-Perron operator, corresponding to a non-zero eigenvalue admits a (unique) analytic extension to the set C\(-infinity, 1]. Analyzing the spectrum of the Frobenius Perron operator in spaces of smooth functions, we extend significantly the domain of validity of the Mayer and Ropstorff asymptotic formula for the decay of correlations of the Gauss map.
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.