19 resultados para Saturation Impulse
Resumo:
The finite difference time domain (FDTD) method has direct applications in musical instrument modeling, simulation of environmental acoustics, room acoustics and sound reproduction paradigms, all of which benefit from auralization. However, rendering binaural impulse responses from simulated
data is not straightforward to accomplish as the calculated pressure at FDTD grid nodes does not contain any directional information. This paper addresses this issue by introducing a spherical array to capture sound pressure on a finite difference grid, and decomposing it into a plane-wave density
function. Binaural impulse responses are then constructed in the spherical harmonics domain by combining the decomposed grid data with free field head-related transfer functions. The effects of designing a spherical array in a Cartesian grid are studied, and emphasis is given to the relationships
between array sampling and the spatial and spectral design parameters of several finite-difference
schemes.