29 resultados para SUGARS
Resumo:
WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.
Resumo:
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction.
Resumo:
Galactokinase, a member of the GHMP (galactokinase, homoserine kinase, mevalonate kinase, phosphomevalonate kinase) family of kinases, catalyses the ATP-dependent phosphorylation of galactose at position 1 on the sugar. This reaction is important in the Leloir pathway of galactose catabolism. The need to produce monosaccharides phosphorylated at position 1 for the synthesis of complex molecules, including aminoglycoside antibiotics, has stimulated interest in exploiting the catalytic potential of galactokinases. However, the enzyme is quite specific, generally only catalysing the phosphorylation of D-galactose and closely related molecules. Directed evolution strategies have identified a key tyrosine residue (Tyr-371 in the Escherichia coli enzyme) which, although distant from the active site, influences the specificity of the enzyme. Alteration of this residue to histidine in E. coli and Lactococcus lactis galactokinases dramatically expanded the substrate range to include both D- and L-sugars. Similar experiments with the human enzyme demonstrated that alteration of the equivalent tyrosine (Tyr-379) to cysteine, lysine, arginine, serine or tryptophan increased the catalytic promiscuity of the enzyme. It has been hypothesised that these specificity changes arise because of alterations in the flexibility of the polypeptide chain. This hypothesis has yet to be tested experimentally. The biotechnological potential of galactokinases is clearly considerable and exploitation of closely related enzymes such as N-acetylgalactosamine kinase and arabinose kinase would expand that potential still further.
Resumo:
Fructose is a six-carbon ketose monosaccharide. In aqueous solution and in the crystalline form, the majority of the molecules form ring structures. Of these, the six-membered pyranose form is the most abundant; however, about one-quarter of the molecules are in the five-membered, furanose form. While many of its reactions are similar to those of glucose, the presence of a ketone group in the chain, and the relative ease with which the molecule forms a five-membered furanose ring affects its chemistry and biochemistry. Specific pathways are required to enable organisms to exploit fructose in energy metabolism; these require the enzyme fructokinase and involve the conversion of fructose to glycolytic intermediates. Similarly, specific pathways for the biosynthesis of fructose and fructose-containing polymers, such as inulin, are required. Non-enzymatic glycation (fructation) by fructose has not been as extensively studied as the corresponding reactions with glucose. Nevertheless, especially in diabetic patients and fructose-rich foodstuffs, this reaction is likely to be important.
Resumo:
Hyperglycemia may contribute directly to pericyte loss and capillary leakage in early diabetic retinopathy. To elucidate relative contributions of glycation, glycoxidation, sugar autoxidation, osmotic stress and metabolic effects in glucose-mediated capillary damage, we tested the effects of D-glucose, L-glucose, mannitol and the potentially protective effects of aminoguanidine on cultured bovine retinal capillary pericytes and endothelial cells. Media (containing 5 mM D-glucose) were supplemented to increase the concentration of each sugar by 5, 10, or 20 mM. Subconfluent pericytes and endothelial cells were exposed to the supplemented media in the presence or absence of aminoguanidine (1 nM-100 µM) for three days. Cell counts, viability and protein were determined. For both cell types, all three sugars produced concentration-dependent decreases in cell counts and protein content (p
Resumo:
Endometrial cancer risk has been directly associated with glycemic load. However, few studies have investigated this link, and the etiological role of specific dietary carbohydrate components remains unclear. Our aim was to investigate associations of carbohydrate intake, glycemic index, and glycemic load with endometrial cancer risk in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Recruitment took place in 1993-2001. Over a median of 9.0 years of follow-up through 2009, 386 women developed endometrial cancer among 36,115 considered in the analysis. Dietary intakes were assessed using a 124-item diet history questionnaire. Cox proportional hazards models were applied to calculate hazard ratios and 95% confidence intervals. Significant inverse associations were detected between endometrial cancer risk and total available carbohydrate intake (hazard ratio (HR) = 0.66, 95% confidence interval (CI): 0.49, 0.90), total sugars intake (HR = 0.71, 95% CI: 0.52, 0.96), and glycemic load (HR = 0.63, 95% CI: 0.46, 0.84) when women in the highest quartile of intake were compared with those in the lowest. These inverse associations were strongest among overweight and obese women. No associations with endometrial cancer risk were observed for glycemic index or dietary fiber. Our findings contrast with previous evidence and suggest that high carbohydrate intakes and glycemic loads are protective against endometrial cancer development. Further clarification of these associations is warranted.
Resumo:
OBJECTIVE: This study was designed to record the dietary habits of patients undergoing methadone therapy.
BACKGROUND: Numerous studies report that patients undergoing methadone treatment present with high levels of oral disease, especially dental caries. A number of factors have been described to account for this: sugared methadone preparations, prolonged oral retention, associated xerostomia and poor diet.
METHODS: A cross-sectional descriptive study using survey methodology was conducted of patients attending a non-resident drug rehabilitation clinic. A self-completion questionnaire and diet diary were developed and distributed to 66 patients over an 8 week period.
RESULTS: Of the 66 questionnaires distributed, 52 were successfully completed giving a response rate of 79%. 6 patients declined to complete the questionnaire. The surveyed patient pool consisted of 32 females (62%) and 20 males (38%) with a mean age of 32 years. All the participants were taking a prescribed daily dose of methadone when questioned. 68% of respondents consumed convience foods or sugary snacks every day. Of those patients who drank tea or coffee daily, 84% added sugar and 54% added 3 teaspoons or more. The majority of patients (71%) consumed at least one glass of a fizzy soft drink daily. In addition, the majority of respondents indicated that they snacked regularly between meals and 24% stated that they often woke up during the night for a snack. Patients recorded their last intake of food ranging from 5pm to 3am.
CONCLUSIONS: The patients surveyed had poor dietary habits. Respondents consumed a large amount of convience foods and sugars during mealtimes and through regular snacking. Dietary counselling should be considered as part of treatment for patients undergoing methadone therapy.
Resumo:
Purpose: High digestible carbohydrate intakes can induce hyperglycemia and hyperinsulinemia and collectively have been implicated in colorectal tumor development. Our aim was to explore the association between aspects of dietary carbohydrate intake and risk of colorectal adenomas and hyperplastic polyps in a large case–control study.
Methods: Colorectal polyp cases (n = 1,315 adenomas only, n = 566 hyperplastic polyps only and n = 394 both) and controls (n = 3,184) undergoing colonoscopy were recruited between 2003 and 2010 in Nashville, Tennessee, USA. Dietary intakes were estimated by a 108-item food frequency questionnaire. Unconditional logistic regression analysis was applied to determine odds ratios (OR) and corresponding 95 % confidence intervals (CI) for colorectal polyps according to dietary carbohydrate intakes, after adjustment for potential confounders.
Results: No significant associations were detected for risk of colorectal adenomas when comparing the highest versus lowest quartiles of intake for total sugars (OR 1.03; 95 % CI 0.84–1.26), starch (OR 1.01; 95 % CI 0.81–1.26), total or available carbohydrate intakes. Similar null associations were observed between dietary carbohydrate intakes and risk of hyperplastic polyps, or concurrent adenomas and hyperplastic polyps.
Conclusion: In this US population, digestible carbohydrate intakes were not associated with risk of colorectal polyps, suggesting that dietary carbohydrate does not have an etiological role in the early stages of colorectal carcinogenesis.
Resumo:
Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.
Resumo:
Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.
Resumo:
We report the first complete structural characterization of the lipopolysaccharide (LPS) from a cystic fibrosis (CF) clinical isolate of Prevotella denticola (B003V1S1X). Chemical, spectroscopic, and spectrometric analyses revealed a unique rough-type LPS (LOS) structure. The structure has a highly negatively charged heptasaccharide core region containing hexoses, with the first two sugars, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and mannose, highly phosphorylated. Furthermore, the lipid A moiety has the typical structure for the genus Prevotella, and was also highly phosphorylated.