61 resultados para SOLUBLE CARBOHYDRATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction.

RESEARCH DESIGN AND METHODS We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean ± SD] BMI 33.6 ± 3.7 kg/m2, aged 39 ± 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured.

RESULTS Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance–related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group.

CONCLUSIONS This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim: Aberrant angiogenesis and defective epithelial repair are key features of idiopathic pulmonary fibrosis (IPF). Endostatin is an antiangiogenic peptide with known effects on endothelial cells. This study aimed to establish the levels of endostatin in the bronchoalveolar lavage fluid (BALF) in IPF and to investigate its actions on distal lung epithelial cells (DLEC) and primary type II cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle size characteristics and encapsulation efficiency of microparticles prepared using triglyceride materials and loaded with two model water-soluble drugs were evaluated. Two emulsification procedures based on o/w and w/o/w methodologies were compared to a novel spray congealing procedure. After extensive modification of both emulsification methods, encapsulation efficiencies of 13.04% tetracycline HCl and 11.27% lidocaine HCl were achievable in a Witepsol (R)-based microparticle. This compares to much improved encapsulation efficiencies close to 100% for the spray congealing method, which was shown to produce spherical particles of similar to 58 mu m. Drug release studies from a Witepsol (R) formulation loaded with lidocaine HCl showed a temperature-dependent release mechanism, which displayed diffusion-controlled kinetics at temperatures similar to 25 degrees C, but exhibited almost immediate release when triggered using temperatures close to that of skin. Therefore, such a system may find application in topical semi-solid formulations, where a temperature-induced burst release is preferred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In asthma there is increased expression of the Th2-type cytokine interleukin-4 (IL-4). IL-4 is important in immunoglobulin isotype switching to immunoglobulin E and adhesion of eosinophils to endothelium.

Objectives: We hypothesized that levels of IL-4 in bronchoalveolar lavage (BAL) fluid would be increased in stable, atopic asthmatic children compared with controls and that levels of its physiologic inhibitor IL-4 soluble receptor α (IL-4sRα) would be correspondingly decreased.

Methods: One hundred sixteen children attending a children's hospital for elective surgery were recruited. A nonbronchoscopic BAL was performed, and IL-4 and IL-4sRα were measured in the BAL supernatants.

Results: There was no significant difference in IL-4 concentrations between atopic asthmatic children, atopic normal controls, and nonatopic normal controls [0.13 pg/mL (0.13 to 0.87) vs 0.13 pg/mL (0.13 to 0.41) vs 0.13 pg/mL (0.13 to 0.5), P = 0.65]. IL-4sRα levels were significantly increased in asthmatic patients compared with atopic controls [6.4 pg/mL (5.0 to 25.5) vs 5.0 pg/mL (5.0 to 9.9), P = 0.018], but not when compared with the nonatopic controls [5.2 pg/mL (5.0 to 10.6), P = 0.19].

Conclusions: Contrary to expectation, IL-4sRα levels are increased in BAL from stable asthmatic children compared with nonatopic controls, and we speculate that IL-4sRα is released by inflammatory cells in the airways to limit the proinflammatory effects of IL-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarises a workshop convened by the UK Food Standards Agency (FSA) on 14 October 2008 to discuss current FSA-funded research on carbohydrates and cardiovascular health. The objective of this workshop was to discuss the results of recent research and to identify any areas which could inform future FSA research calls. This workshop highlighted that the FSA is currently funding some of the largest, well-powered intervention trials investigating the type of fat and carbohydrate, whole grains and fruit and vegetables, on various CVD risk factors. Results of these trials will make a substantive contribution to the evidence on diet and cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonance Raman spectroscopy has been used to probe the structures of; tetrakis(1-methylpyridinium-4-yl)-porphinatoiron(III), FeIII (T4MPyP); tetrakis(1-methylpyridium-2-yl)porphinatoiron(III), FeIII (T2MPyP); tetrakis(4-sulphonatophkenyl)porphinatoir(III), FeIII(TSPP); and tetrakis(4-carboxylatophenyl)porphinatoiron(III), FeIII(TCPP), over a wide pH range. The anionic complexes FeIII (TSPP) and FeIII (TCPP) contain high-spin iron(III) at all pHs. Both these complexes exhibit marked spectral changes at ca. pH 6 which correspond to conversion from the diaquo species, in acid solution, to hydroxy- or mu-oxo dimer complexes. Both cationic complexes show similar diaquo to high-spin hydroxy, or mu-oxo dimer, transitions at ca. pH 6. However, at pH > 11.5 for FeIII (T4MPyP) and pH > 9 for FeIII (T2MPyP) a second equilibrium process is observed, leading to two new species. One of these is readily assigned as the low-spin iron(III) dihydroxy complex by analogy with spectra of the dicyano complex. The second species is assigned to the hydroxy iron(II) complex by comparison with photo-chemically generated FeII (T4MPyP) (OH). The formation of iron(II) species in alkaline solutions of FeIII (T4MPyP) and FeIII (T2MPyP) is entirely unexpected and the significance of the observation to previous investigations of the pH-dependent behaviour of these complexes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.