94 resultados para SLAM RGB-D SlamDunk Android 3D mobile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-sample rate 3D median filtering processor architecture is proposed, based on a novel 3D median filtering algorithm, that can reduce the computing complexity in comparison with the traditional bubble sorting algorithm. A 3 x 3 x 3 filter processor is implemented in VHDL, and the simulation verifies that the processor can process a 128 x 128 x 96 MRI image in 0.03 seconds while running at 50 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper, Verma et al. [Eur. Phys. J. D 42, 235 (2007)] have reported results for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 17 levels of the (1s(2)2s(2)2p(6))3s(2)3p(6), 3s(2)3p(5)3d and 3s3p(6)3d configurations of Ni XI. They adopted the CIV3 and R-matrix codes for the generation of wavefunctions and the scattering process, respectively. In this paper, through two independent calculations performed with the fully relativistic DARC (along with GRASP) and FAC codes, we demonstrate that their results are unreliable. New data are presented and their accuracy is assessed.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship’s propeller. The flow characteristics of a ship’s propeller jet are of particular interest for the researchers investigating the jet induced seabed damage as documented in the previous studies. Laser Doppler Anemometry (LDA) measurements show that the axial component of velocity is the main contributor to the velocity magnitude at the initial plane of a ship’s propeller jet. The tangential component contributes to the rotation while the radial component which contributes to the diffusion, are the second and third largest contributors to the velocity magnitude. The maximum tangential and radial velocity components at the initial plane are approximately 82% and 14% of the maximum axial velocity component, respectively. The axial velocity distribution at the initial plane shows two peaked ridges with a low velocity core at the rotation axis. The turbulence intensity distribution shows a three-peaked profile at the initial plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.