40 resultados para Quantum transport calculations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (alpha-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The selective catalytic reduction (SCR) of NOx compounds with NH3 is a hot topic in recent years. Among various catalysts, zeolites are proved to be efficient and promising for NH3-SCR, yet the whole processes and intrinsic mechanism are still not well understood due to the structural complexity of zeolites. With the improvement of theoretical chemistry techniques, quantum-chemical calculations are now capable of modeling the structure, acidity, adsorption, and ultimately reaction pathways over zeolites to some extent. In this review, a brief summary of relevant concepts of NH3-SCR is presented. Cluster approaches, embedded techniques, and periodic treatments are described as three main methods. Details of quantum-chemical investigations toward the key issues such as, the structure of active sites, the adsorption of small molecules, and the reaction mechanism of NH3-SCR over zeolites are discussed. Finally, a perspective for future theoretical research is given. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of ˜5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (˜6.4 Mpc) and SN 2014J (˜3.5 Mpc).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An overview of a many-body approach to calculation of electronic transport in molecular systems is given. The physics required to describe electronic transport through a molecule at the many-body level, without relying on commonly made assumptions such as the Landauer formalism or linear response theory, is discussed. Physically, our method relies on the incorporation of scattering boundary conditions into a many-body wavefunction and application of the maximum entropy principle to the transport region. Mathematically, this simple physical model translates into a constrained nonlinear optimization problem. A strategy for solving the constrained optimization problem is given. (C) 2004 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The many-electron-correlated scattering (MECS) approach to quantum electronic transport was investigated in the linear-response regime [I. Bâldea and H. Köppel, Phys. Rev. B 78, 115315 (2008). The authors suggest, based on numerical calculations, that the manner in which the method imposes boundary conditions is unable to reproduce the well-known phenomena of conductance quantization. We introduce an analytical model and demonstrate that conductance quantization is correctly obtained using open system boundary conditions within the MECS approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monte Carlo calculations of quantum yield in PtSi/p-Si infrared detectors are carried out taking into account the presence of a spatially distributed barrier potential. In the 1-4 mu m wavelength range it is found that the spatial inhomogeneity of the barrier has no significant effect on the overall device photoresponse. However, above lambda = 4.0 mu m and particularly as the cut-off wavelength (lambda approximate to 5.5 mu m) is approached, these calculations reveal a difference between the homogeneous and inhomogeneous barrier photoresponse which becomes increasingly significant and exceeds 50% at lambda = 5.3 mu m. It is, in fact, the inhomogeneous barrier which displays an increased photoyield, a feature that is confirmed by approximate analytical calculations assuming a symmetric Gaussian spatial distribution of the barrier. Furthermore, the importance of the silicide layer thickness in optimizing device efficiency is underlined as a trade-off between maximizing light absorption in the silicide layer and optimizing the internal yield. The results presented here address important features which determine the photoyield of PtSi/Si Schottky diodes at energies below the Si absorption edge and just above the Schottky barrier height in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology of the transport process. We study in detail the behavior of thermodynamically relevant quantities such as heat currents and mean energies of the oscillators, establishing rigorous analytical conditions for the existence of a steady state, whose features we analyze carefully. In particular, we assess the conditions that should be faced to recover trends reminiscent of the classical Fourier law of heat conduction and highlight how such a possibility depends on the environment linked to our system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental values to date for the resistances of single molecules commonly disagree by orders of magnitude. By reformulating the transport problem using boundary conditions suitable for correlated many-electron systems, we approach electron transport across molecules from a new standpoint. Application of our correlated formalism to benzene-dithiol gives current-voltage characteristics close to experimental observations. The method can solve the open system quantum many-body problem accurately, treats spin exactly, and is valid beyond the linear response regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of carbon nanotubes, it has been speculated that these materials should behave like nanoscale wires with unusual electronic properties and exceptional strength. Recently, 'ropes' of close-packed single-wall nanotubes have been synthesized in high yield. The tubes in these ropes are mainly of the (10,10) type3, which is predicted to be metallic. Experiments on individual nanotubes and ropes indicate that these systems indeed have transport properties that qualify them to be viewed as nanoscale quantum wires at low temperature. It has been expected that the close-packing of individual nanotubes into ropes does not change their electronic properties significantly. Here, however, we present first-principles calculations which show that a broken symmetry of the (10,10) tube caused by interactions between tubes in a rope induces a pseudogap of about 0.1 eV at the Fermi level. This pseudogap strongly modifies many of the fundamental electronic properties: we predict a semimetal-like temperature dependence of the electrical conductivity and a finite gap in the infrared absorption spectrum. The existence of both electron and hole charge carriers will lead to qualitatively different thermopower and Hall-effect behaviours from those expected for a normal metal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report calculations of the transport properties of multiwalled carbon nanotubes based on a scattering-theoretic approach that takes into account scattering within each tube, between tubes, and at the metal contacts. We find that only the outer tube contributes to the conductance, as has been implied by experiments. Referring to experiments performed with liquid-metal contacts, we also explain why the measured conductance is close to an integer number of conductance quanta, when the tubes are immersed in the liquid metal for several hundreds of nanometers and is not an integer when they are immersed for only a few nanometers. Finally, we propose that the observed conductance of only one quantum

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.