31 resultados para Quadratic polynomial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building on a proof by D. Handelman of a generalisation of an example due to L. Fuchs, we show that the space of real-valued polynomials on a non-empty set X of reals has the Riesz Interpolation Property if and only if X is bounded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much interest recently in the analysis of optomechanical systems incorporating dielectric nano- or microspheres inside a cavity field. We analyse here the situation when one of the mirrors of the cavity itself is also allowed to move. We reveal that the interplay between the two oscillators yields a cross-coupling that results in, e.g., appreciable cooling and squeezing of the motion of the sphere, despite its nominal quadratic coupling. We also discuss a simple modification that would allow this cross-coupling to be removed at will, thereby yielding a purely quadratic coupling for the sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let C be a bounded cochain complex of finitely generatedfree modules over the Laurent polynomial ring L = R[x, x−1, y, y−1].The complex C is called R-finitely dominated if it is homotopy equivalentover R to a bounded complex of finitely generated projective Rmodules.Our main result characterises R-finitely dominated complexesin terms of Novikov cohomology: C is R-finitely dominated if andonly if eight complexes derived from C are acyclic; these complexes areC ⊗L R[[x, y]][(xy)−1] and C ⊗L R[x, x−1][[y]][y−1], and their variants obtainedby swapping x and y, and replacing either indeterminate by its inverse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Credal networks relax the precise probability requirement of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper, we present a new variable elimination algorithm for exactly computing posterior inferences in extensively specified credal networks, which is empirically shown to outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good approximation scheme, that is, a procedure that for any input is guaranteed to return a solution not worse than the optimum by a given factor. Remarkably, we show that when the networks have bounded treewidth and bounded number of states per variable the approximation algorithm runs in time polynomial in the input size and in the inverse of the error factor, thus being the first known fully polynomial-time approximation scheme for inference in credal networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a homological characterisation of those chain complexes of modules over a Laurent polynomial ring in several indeterminates which are finitely dominated over the ground ring (that is, are a retract up to homotopy of a bounded complex of finitely generated free modules). The main tools, which we develop in the paper, are a non-standard totalisation construction for multi-complexes based on truncated products, and a high-dimensional mapping torus construction employing a theory of cubical diagrams that commute up to specified coherent homotopies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communicating answer set programming is a framework to represent and reason about the combined knowledge of multiple agents using the idea of stable models. The semantics and expressiveness of this framework crucially depends on the nature of the communication mechanism that is adopted. The communication mechanism we introduce in this paper allows us to focus on a sequence of programs, where each program in the sequence may successively eliminate some of the remaining models. The underlying intuition is that of leaders and followers: each agent’s decisions are limited by what its leaders have previously decided. We show that extending answer set programs in this way allows us to capture the entire polynomial hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive intermodulation (PIM) often limits the performance of communication systems, particularly in the presence of multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM in distributed circuits are not fully understood, the behavioural models are frequently employed to describe the process of PIM generation. In this paper, a memoryless nonlinear polynomial model, capable of predicting high-order multi-carrier intermodulation products, is deduced from the third-order two-tone PIM measurements on a microstrip transmission line with distributed nonlinearity. The analytical model of passive distributed nonlinearity is implemented in Keysight Technology’s ADS simulator to evaluate the adjacent band power ratio for three-tone signals. The obtained results suggest that the costly multi-carrier test setups can possibly be replaced by a simulation tool based on the properly retrieved nonlinear polynomial model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts.Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the Golod–Shafarevich theorem, an associative algebra $R$ given by $n$ generators and $<n^2/3$ homogeneous quadratic relations is not 5-step nilpotent. We prove that this estimate is optimal. Namely, we show that for every positive integer $n$, there is an algebra $R$ given by $n$ generators and $\lceil n^2/3\rceil$ homogeneous quadratic relations such that $R$ is 5-step nilpotent.