175 resultados para Prediagnosis tool
Resumo:
In this prospective clinical study, 892 patients with normal and impaired semen were examined in order to investigate the correlation between the concentration of fibronectin in seminal plasma and the motility of spermatozoa. The fibronectin concentration in seminal plasma, total sperm motility and linear sperm motility were measured. We report here a significant negative correlation between the fibronectin concentration in seminal plasma and total sperm motility (r=-0.3474). There was no link between varicocele and vasectomy, or between varicocele and variation in the concentration of fibronectin. It is concluded that higher concentrations of the acute-phase protein fibronectin may be a cause of severe reduction in sperm motility. The investigation of fibronectin concentrations in seminal fluid could be a new and helpful clinical tool in the assessment of male fertility.
Resumo:
Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.
Resumo:
Radiation therapy is a treatment modality routinely used in cancer management so it is not unexpected that radiation-inducible promoters have emerged as an attractive tool for controlled gene therapy. The human tissue plasminogen activator gene promoter (t-PA) has been proposed as a candidate for radiogenic gene therapy, but has not been exploited to date. The purpose of this study was to evaluate the potential of this promoter to drive the expression of a reporter gene, the green fluorescent protein (GFP), in response to radiation exposure. METHODS: To investigate whether the promoter could be used for prostate cancer gene therapy, we initially transfected normal and malignant prostate cells. We then transfected HMEC-1 endothelial cells and ex vivo rat tail artery and monitored GFP levels using Western blotting following the delivery of single doses of ionizing radiation (2, 4, 6 Gy) to test whether the promoter could be used for vascular targeted gene therapy. RESULTS: The t-PA promoter induced GFP expression up to 6-fold in all cell types tested in response to radiation doses within the clinical range. CONCLUSIONS: These results suggest that the t-PA promoter may be incorporated into gene therapy strategies driving therapeutic transgenes in conjunction with radiation therapy.
Resumo:
A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.