84 resultados para Plasma spraying
Resumo:
Background: Vitamin B2 exists in blood as riboflavin and its cofactors, flavin mononucleotide (FMN) and FAD. The erythrocyte glutathione reductase activation coefficient (EGRAC) has traditionally been used to assess vitamin B2 status in humans. We investigated the relationships of EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD in elderly volunteers and their responses to riboflavin administration. Methods: EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD were determined in 124 healthy individuals with a mean age of 69 years. The same measurements were made in a subgroup of 46 individuals with EGRAC 1.20 who participated in a randomized double-blind 12-week intervention study and received riboflavin (1.6 mg/day; n = 23) or placebo (n = 23). Results: Median plasma concentrations were 10.5 nmol/L for riboflavin, 6.6 nmol/L for FMN, and 74 nmol/L for FAD. In erythrocytes, there were only trace amounts of riboflavin, whereas median FMN and FAD concentrations were 44 and 469 nmol/L, respectively. Erythrocyte FMN and FAD correlated with each other and with EGRAC and plasma riboflavin (P
Resumo:
Background: Studies investigating the relationship between plasma total homocysteine (tHcy) and vascular disease usually rely on a single measurement. Little information is available, however, on the seasonal variability of plasma tHcy. The aim of this study was to investigate the seasonal variation in fasting plasma tHcy and related B-vitamin intake and status in a group of people who did not consume fortified foods or take B-vitamin supplements. Methods: In this longitudinal study, a group of 22 healthy people were followed for 1 year. A fasting blood sample and dietary information were collected from each individual every 3 months, i.e., at the end of each season. Results: There was no significant seasonal variation in plasma tHcy or in B-vitamin intake or status with the exception of red cell folate (significantly lower in spring compared with autumn or winter) and serum folate (significantly lower in spring compared with the other seasons). Although the between-person variation in plasma tHcy was high (47%), the within-person variation was low (11%). This low variation, combined with the low methodologic imprecision of 3.8%, yielded a high reliability coefficient for plasma tHcy (0.97). Conclusions: Although there was a small seasonal variation in folate status, there was no corresponding seasonal variation in plasma tHcy. The high reliability coefficient for plasma tHcy suggests that a single measurement is reflective of an individual’s average plasma tHcy concentration, thus indicating its usefulness as a potential predictor of disease. This, however, needs to be confirmed in different subgroups of the population.
Resumo:
BACKGROUND: Current data suggest that physiologic doses of vitamin B-6 have no significant homocysteine-lowering effect. It is possible that an effect of vitamin B-6 was missed in previous trials because of a much greater effect of folic acid, vitamin B-12, or both. OBJECTIVE: The aim of this study was to investigate the effect of low-dose vitamin B-6 supplementation on fasting total homocysteine (tHcy) concentrations in healthy elderly persons who were made replete with folate and riboflavin. DESIGN: Twenty-two healthy elderly persons aged 63-80 y were supplemented with a low dose of vitamin B-6 (1.6 mg/d) for 12 wk in a randomized, double-blind, placebo-controlled trial after repletion with folic acid (400 microg/d for 6 wk) and riboflavin (1.6 mg/d for 18 wk); none of the subjects had a vitamin B-12 deficiency. RESULTS: Folic acid supplementation lowered fasting tHcy by 19.6% (P
Resumo:
Abstract An HPLC method has been developed and validated for the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples. The method utilises 200 µl of plasma and sample preparation involves protein precipitation followed by Solid Phase Extraction (SPE). Determination of standard curves of peak height ratio (PHR) against concentration was performed by weighted least squares linear regression using a weighting factor of 1/concentration2. The developed method was found to be linear over concentration ranges of 30–1000 ng/ml for spironolactone and 25–1000 ng/ml for 7a-thiomethylspirolactone and canrenone. The lower limit of quantification for spironolactone, 7a-thiomethylspirolactone and canrenone were calculated as 28, 20 and 25 ng/ml, respectively. The method was shown to be applicable to the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples and also plasma from healthy human volunteers.
Resumo:
BACKGROUND AND PURPOSE: Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype. METHODS: Under a case-control design we compared fasting levels of homocysteine and MTHFR genotypes in groups of subjects consisting of stroke, vascular dementia (VaD), and Alzheimer disease patients and normal controls from Northern Ireland. RESULTS: A significant increase in plasma homocysteine was observed in all 3 disease groups compared with controls. This remained significant after allowance for confounding factors (age, sex, hypertension, cholesterol, smoking, creatinine, and nutritional measures). MTHFR genotype was not found to influence homocysteine levels, although the T allele was found to increase risk for VaD and perhaps dementia after stroke. CONCLUSIONS: We report that moderately high plasma levels of homocysteine are associated with stroke, VaD, and Alzheimer disease. This is not due to vascular risk factors, nutritional status, or MTHFR genotype
Resumo:
This article describes the development of SPE and HPLC methods for the simultaneous determination of metformin and glipizide, gliclazide, glibenclamide or glimperide in plasma. Several extraction and HPLC methods have been described previously for the determination of each of these analytes in plasma separately. The simultaneous determination of these analytes is important for the routine monitoring of diabetic patients who take combination medications and for studying the pharmacokinetics of the combined dosage forms. In addition this developed method can serve as a standard method for the plasma determination of these analytes therefore saving time, effort and money. The recoveries of the developed methods were found to be between 76.3% and 101.9%. The limits of quantification were between 5 and 22.5 ng/ml. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error %) was always less than 12%. Stability analysis showed that all analytes are stable for at least 3 months when stored at -70degreesC. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter ���¾=20 25 erg cm s-1 under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.
Resumo:
The construction of short pulse (
Resumo:
We present differential x-ray scattering cross sections for a radiatively heated plasma showing overall consistency, in both form and absolute value, with theoretical simulations. In particular, the evolution of the plasma from a strongly coupled high density phase to a lower density weakly coupled phase is quite clearly shown in both experiment and simulation. The success of this experiment shows that x-ray scattering has the potential to become an extremely useful diagnostic technique for dense plasma physics.