22 resultados para Physical Testing
Resumo:
The commonly used British Standard constant head triaxial permeability (BS) test, for permeability testing of fine grained soils, is known to have a relatively long test duration. Consequently, a reduction in the required time for permeability test provides potential cost savings, to the construction industry (specifically, for use during Construction Quality Control (CQA) of landfill mineral liners). The purpose of this article is to investigate and evaluate alternative short duration testing methods for the measurement of the permeability of fine grained soils.
As part of the investigation the feasibility of an existing method of short duration permeability test, known as the Accelerated Permeability (AP) test was assessed and compared with permeability measured using British Standard method (BS) and Ramp Accelerated Permeability (RAP). Four different fine grained materials, of a variety of physical properties were compacted at various moisture contents to produced analogous samples for testing using three the three different methodologies. Fabric analysis was carried out on specimens derived from post-test samples using Mercury Intrusion Porosimetry (MIP) and Scanning Electron Microscope (SEM) to assess the effects of testing methodology on soil structure. Results showed that AP testing in general under predicts permeability values derived from the BS test due to large changes in structure of the soil caused by AP test methodology, which is also validated using MIP and SEM observations. RAP testing, in general provides an improvement to the AP test but still under-predicts permeability values. The potential savings in test duration are shown to be relatively minimal for both the AP and RAP tests.
Resumo:
We demonstrate genuine three-mode nonlocality based on phase-space formalism. A Svetlichny-type Bell inequality is formulated in terms of the s-parametrized quasiprobability function. We test such a tool using exemplary forms of three-mode entangled states, identifying the ideal measurement settings required for each state. We thus verify the presence of genuine three-mode nonlocality that cannot be reproduced by local or nonlocal hidden variable models between any two out of three modes. In our results, GHZ- and W-type nonlocality can be fully discriminated. We also study the behavior of genuine tripartite nonlocality under the effects of detection inefficiency and dissipation induced by local thermal environments. Our formalism can be useful to test the sharing of genuine multipartite quantum correlations among the elements of some interesting physical settings, including arrays of trapped ions and intracavity ultracold atoms. DOI: 10.1103/PhysRevA.87.022123
Resumo:
Energy harvesting from ambient vibration is a promising field, especially for applications in larger infrastructures such as bridges. These structures are more frequently monitored for damage detection because of their extended life, increased traffic load and environmental deterioration. In this regard, the possibility of sourcing the power necessary for the sensors from devices embedded in the structure, thus cutting the cost due to the management of battery replacing over the lifespan of the structure, is particularly attracting. Among others, piezoelectric devices have proven to be especially effective and easy to apply since they can be bonded to existing host structure. For these devices the energy harvesting capacity is achieved directly from the variation in the strain conditions from the surface of the structure. However these systems need to undergo significant research for optimisation of their harvesting capacity and for assessing the feasibility of application to various ranges of bridge span and load. In this regard scaled bridge prototypes can be effectively used not only to assess numerical models and studies in an inexpensive and repeatable way but also to test the electronic devices under realistic field conditions. In this paper the theory of physical similitude is applied to the design of bridge beams with embedded energy harvesting systems and health monitoring sensors. It will show both how bridge beams can be scaled in such a way to apply and test energy harvesting systems and 2) how experimental data from existing bridges can be applied to prototypes in a laboratory environment. The study will be used for assessing the reliability of the system over a train bridge case study undergoing a set load cycles and induced localised damage.
Resumo:
We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.
Resumo:
It is acknowledged that one of the consequences of the ageing process is cognitive decline, which leads to an increase in the incidence of illnesses such as dementia. This has become ever more relevant due to the projected increase in the ageing demographic. Dementia affects visuo-spatial perception, causing difficulty with wayfinding, even during the early stages of the disease. The literature widely recognises the physical environment’s role in alleviating symptoms of dementia and improving quality of life for residents. It also identifies the lack of available housing options for older people with dementia and consequently the current stock is ill-equipped to provide adequate support.
Recent statistics indicate that 80% of those residing in nursing or residential care homes have some form of dementia or severe memory problems. The shift towards institutional care settings, the need for specialist support and care, places a greater impetus on the need for a person-centred approach to tackle issues related to wayfinding and dementia.
This thesis therefore aims to improve design for dementia in nursing and residential care settings in the context of Northern Ireland. This will be undertaken in order to provide a better understanding of how people with dementia experience the physical environment and to highlight features of the design that assist with wayfinding. Currently there are limited guidelines on design for dementia, meaning that many of these are theoretical, anecdotal and not definitive. Hence a greater verification to address the less recognised design issues is required. This is intended to ultimately improve quality of life, wellbeing, independence and uphold the dignity of people with dementia living in nursing or residential care homes.
The research design uses a mixed methods approach. A thorough preparation and consideration of ethical issues informed the methodology. The various facets were also trialled and piloted to identify any ethical, technological, methodological, data collection and analysis issues. The protocol was then amended to improve or resolve any of the aforementioned issues. Initially a questionnaire based on leading design recommendations was conducted with home managers. Semi-structured interviews were developed from this and conducted with staff and resident’s next of kin. An evidence-based approach was used to design a study which used ethnographic methods, including a wayfinding task. This followed a repeated measures design which would be used to actively engage residents with dementia in the research. Complementary to the wayfinding task, conversational and semi-structured interviews were used to promote dialogue and direct responses with the person with dementia. In addition to this, Space Syntax methodologies were used to examine the physical properties of the architectural layout. This was then cross-examined with interview responses and data from the wayfinding tasks.
A number of plan typologies were identified and were determined as synonymous with decision point types which needed to be made during the walks. The empirical work enabled the synthesis of environmental features which support wayfinding.
Results indicate that particular environmental features are associated with improved performance on the wayfinding tasks. By enhancing design for dementia, through identifying the attributes, challenges with wayfinding may be overcome and the benefits of the physical environment can be seen to promote wellbeing.
The implications of this work mean that the environmental features which have been highlighted from the project can be used to inform guidelines, thus adding to existing knowledge. Future work would involve the dissemination of this information and the potential for it to be made into design standards or regulations which champion design for dementia. These would increase awareness for designers and stakeholders undertaking new projects, extensions or refurbishments.
A person-centred, evidence-based design was emphasised throughout the project which guaranteed an in-depth study. There were limitations due to the available resources, time and funding. Future research would involve testing the identified environmental features within a specific environment to enable measured observation of improvements.
Resumo:
Cyber-attacks against Smart Grids have been found in the real world. Malware such as Havex and BlackEnergy have been found targeting industrial control systems (ICS) and researchers have shown that cyber-attacks can exploit vulnerabilities in widely used Smart Grid communication standards. This paper addresses a deep investigation of attacks against the manufacturing message specification of IEC 61850, which is expected to become one of the most widely used communication services in Smart Grids. We investigate how an attacker can build a custom tool to execute man-in-the-middle attacks, manipulate data, and affect the physical system. Attack capabilities are demonstrated based on NESCOR scenarios to make it possible to thoroughly test these scenarios in a real system. The goal is to help understand the potential for such attacks, and to aid the development and testing of cyber security solutions. An attack use-case is presented that focuses on the standard for power utility automation, IEC 61850 in the context of inverter-based distributed energy resource devices; especially photovoltaic (PV) generators.
Resumo:
We propose a mechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center-of-mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoher- ence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the timescale of seconds, and that the free parameter λcsl which characterises the model ought to be testable to values as low as 10^{−12} Hz.