69 resultados para POWER OUTPUT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the impact of tower shadow effect on the power output of a fixed-speed wind farm. A data acquisition unit was placed at a wind farm in Northern Ireland which consists of ten fixed-speed wind turbines. The recording equipment logged the wind farmpsilas electrical data, which was time stamped using the global positioning network. Video footage of the wind farm was recorded and from it the blade angle of each turbine was determined with respect to time. Using the blade angle data and the wind farmpsilas power output, studies where performed to ascertain the extent of tower shadow effect on power fluctuation. This paper presents evidence that suggests that tower shadow effect has a significant impact on power fluctuation and that this effect is increased due to the synchronising of turbine blades around the tower region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.

The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.

This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.

The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the voltage and reactive power issues surrounding the connection of Distributed Generation (DG) on the low-voltage (LV) distribution network. The presented system-wide voltage control algorithm consists of three stages. Firstly available reactive power reserves are utilized. Then, if required, DG active power output is curtailed. Finally, curtailment of non-critical site demand is considered. The control methodology is tested on a variant of the 13-bus IEEE Node Radial Distribution Test Feeder. The presented control algorithm demonstrated that the distribution system operator (DSO) can maintain voltage levels within a desired statutory range by dispatching reactive power from DG or network devices. The practical application of the control strategy is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to different terminal characteristics of the PV modules. The investigation of three faults is also conducted analytically and experimentally, and maintenance suggestions are also provided for different fault types. The proposed methodology is developed to combine the electrical and thermal characteristics of PV cells subjected to different fault mechanisms through simulation and experimental tests. Furthermore, the fault diagnosis method can be incorporated into the maximum power point tracking schemes to shift the operating point of the PV string. The developed technology has improved over the existing ones in locating the faulty cell by a thermal camera, providing a remedial measure, and maximizing the power output under faulty conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.

In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.

A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.

A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.

The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.

The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current trends in the automotive industry have placed increased importance on engine downsizing for passenger vehicles. Engine downsizing often results in reduced power output and turbochargers have been relied upon to restore the power output and maintain drivability. As improved power output is required across a wide range of engine operating conditions, it is necessary for the turbocharger to operate effectively at both design and off-design conditions. One off-design condition of considerable importance for turbocharger turbines is low velocity ratio operation, which refers to the combination of high exhaust gas velocity and low turbine rotational speed. Conventional radial flow turbines are constrained to achieve peak efficiency at the relatively high velocity ratio of 0.7, due the requirement to maintain a zero inlet blade angle for structural reasons. Several methods exist to potentially shift turbine peak efficiency to lower velocity ratios. One method is to utilize a mixed flow turbine as an alternative to a radial flow turbine. In addition to radial and circumferential components, the flow entering a mixed flow turbine also has an axial component. This allows the flow to experience a non-zero inlet blade angle, potentially shifting peak efficiency to a lower velocity ratio when compared to an equivalent radial flow turbine.
This study examined the effects of varying the flow conditions at the inlet to a mixed flow turbine and evaluated the subsequent impact on performance. The primary parameters examined were average inlet flow angle, the spanwise distribution of flow angle across the inlet and inlet flow cone angle. The results have indicated that the inlet flow angle significantly influenced the degree of reaction across the rotor and the turbine efficiency. The rotor studied was a custom in-house design based on a state-of-the-art radial flow turbine design. A numerical approach was used as the basis for this investigation and the numerical model has been validated against experimental data obtained from the cold flow turbine test rig at Queen’s University Belfast. The results of the study have provided a useful insight into how the flow conditions at rotor inlet influence the performance of a mixed flow turbine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact differential 4-way power combiner with 2.3 dB loss and high common-mode rejection characteristic for use in mm-wave PAs is presented. A complete circuit comprised of a power splitter, two-stage cascode PA array, and a power combiner was implemented in SiGe technology. Measured small-signal gain of at least 17 dB was obtained from 74.5 GHz to 80.5 GHz with a peak 21 dB at 79 GHz. The prototype delivered 13.2 dBm P1dB and 14.3 dBm Psat when operated from a single 3.3 V supply at 75 GHz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.