83 resultados para PLATFORM SWITCHING
Resumo:
Disguising a metal complex as a micelle by using amphiphilic phosphine ligands enables it to switch between a coordination polymer and a discrete cage in response to solvent polarity or pH; this medium-dependent behaviour of the complex is rational because it parallels that of true micelles.
Resumo:
The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-gamma producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation. The Journal of Immunology, 2011, 186: 1377-1383.
Resumo:
Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.
Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.
Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
Resumo:
1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.
Resumo:
Currently, there are no fast in vitro broad spectrum screening bioassays for the detection of marine toxins. The aim of this study was to develop such an assay. In gene expression profiling experiments 17 marker genes were provisionally selected that were differentially regulated in human intestinal Caco-2 cells upon exposure to the lipophilic shellfish poisons azaspiracid-1 (AZA1) or dinophysis toxin-1 (DTX1). These 17 genes together with two control genes were the basis for the design of a tailored microarray platform for the detection of these marine toxins and potentially others. Five out of the 17 selected marker genes on this dedicated DNA microarray gave dear signals, whereby the resulting fingerprints could be used to detect these toxins. CEACAM1, DDIT4, and TUBB3 were up-regulated by both AZA1 and DTX1, TRIB3 was up-regulated by AZA1 only, and OSR2 by DTX1 only. Analysis by singleplex qRT-PCR revealed the up- and down-regulation of the selected RGS16 and NPPB marker genes by DTX1, that were not envisioned by the new developed dedicated array. The qRT-PCR targeting the DDIT4, RSG16 and NPPB genes thus already resulted in a specific pattern for AZA1 and DTX1 indicating that for this specific case qRT-PCR might a be more suitable approach than a dedicated array.
Resumo:
We report on the non-volatile resistive switching properties of epitaxial nickel oxide (NiO) nanostructures, 10-100 nm wide and up to 30 nm high grown on (001)-Nb:SrTiO3 substrates. Conducting-atomic force microscopy on individual nano-islands confirms prominent bipolar switching with a maximum ON/OFF ratio of similar to 10(3) at a read voltage of similar to+0.4V. This ratio is found to decrease with increasing height of the nanostructure. Linear fittings of I-V loops reveal that low and high resistance states follow Ohmic-conduction and Schottky-emission mechanism, respectively. The switching behavior (dependence on height) is attributed to the modulation of the carrier density at the nanostructure-substrate interface due to the applied electric field.