26 resultados para Oxidation-kinetics
Resumo:
The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.
Resumo:
The kinetics of oxidation of water to oxygen by MnO4-, mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of MnO4- (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50 +/- 1 kJ mol-1. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to O2 and the highly irreversible reduction of MnO4- to Mn2+.
Resumo:
A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).
Resumo:
The kinetics of oxidative dissolution of RuO2 .xH2O to RuO4 by Ce(iv) ions are studied. Under conditions of a low [Ce(iv)] : [RuO2 .xH2O] ratio (e.g. 0.35 : 1) and a high background concentration of Ce(III) ions (which impede dissolution) the initial reduction of Ce(iv) ions is due to charging of the RuO2 .xH2O microelectrode particles. The initial rate of charging depends directly upon [RuO2 .xH2O] and has an activation energy of 25 +/- 5 kJ mol-1 Under conditions of a high [Ce(iv] : [RuO2 .xH2O] (e.g. 9 : 1) and a low background [Ce(III] the reduction of Ce(iv) ions is almost totally associated with the dissolution of RuO2 .xH2O to RuO4, i.e. not charging. The kinetics of dissolution obey an electrochemical model in which the reduction of Ce(iv) ions and the oxidation of RuO2 .xH2O to RuO4 are assumed to be highly reversible and irreversible processes, respectively, mediated by dissolving the microelectrode particles of RuO2 .xH2O. Assuming this electrochemical model, from an analysis of the kinetics of dissolution the activation energy for this process was estimated to be 39 +/- 5 kJ mol-1 and the Tafel slope for RuO2 .xH2O corrosion was calculated to be 15 mV per decade. The mechanistic implications of these results are discussed.
Resumo:
The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.
Resumo:
The majority of the kinetic models employed in catalytic after-treatment of exhaust emissions use a global kinetic approach owing to the simplicity because one expression can account for all the steps in a reaction. The major drawback of this approach is the limited predictive capabilities of the models. The intrinsic kinetic approach offers much more information about the processes occurring within the catalytic converter; however, it is significantly more complex and time consuming to develop. In the present work, a methodology which allows accessing a model that combines the simplicity of the global kinetic approach and the accuracy of the intrinsic kinetic approach is reported. To assess the performance of this new approach, the oxidation of carbon monoxide in the presence of nitric oxide as well as a driving cycle was investigated. The modelling of carbon monoxide oxidation with oxygen which utilised the intrinsic kinetic approach with the global kinetic approach was used for the carbon monoxide + nitric oxide reaction (and all remaining reactions for the driving cycle). The comparison of the model results for the dual intrinsic + global kinetic approach with the experimental data obtained for both the reactor and the driving cycle indicate that the dual approach is promising with results significantly better than those obtained with only the global kinetics approach.
Resumo:
The char oxidation of a torrefied biomass and its parent material was carried out in an isothermal plug flow reactor (IPFR), which is able to rapidly heat the biomass particles to a maximum temperature of 1400 °C at a heating rate of 104 °C/s, similar to the real conditions found in power plant furnaces. During each char oxidation test, the residues of biomass particles were collected and analyzed to determine the weight loss based on the ash tracer method. According to the experimental results, it can be concluded that chars produced from a torrefied biomass are less reactive than the ones produced, under the same conditions, from its raw material. The apparent kinetics of the torrefied biomass and its parent material are determined by minimizing the difference between the modeled and the experimental results. The predicted weight loss during char oxidation, using the determined kinetics, agrees well with experimental results
Resumo:
The redox catalyst ruthenium dioxide, prepared via the Adams technique, i.e.Ru(Adams), is used as a water oxidation catalyst using the oxidants (i) Ce(IV) in 0.5M H2SO4 and (ii) periodate in 0.5 M H2SO4, water and 0.1 M KOH. Like Ce(IV),periodate is a very strong oxidant that is able to oxidise water to oxygen and can bereadily monitored spectrophotometrically at 280 nm, compared with 430 nm for Ce(IV).More importantly, unlike Ce(IV), which is unstable towards hydrolysis above pH 1,periodate is stable in acid, water and strong alkali. A spectrophotometric study of thekinetics of periodate reduction, and concomitant oxidation of water to O2, reveals thatin the presence of a suitable redox catalyst, Ru(Adams) in this work, periodate is ableto effect the stoichiometric oxidation of water, with a turnover number > 64. In justwater, the kinetics of the latter reaction appear diffusion-controlled, due to the largethermodynamic driving force, a measure of which is the difference in redox potential,i.e. ∆E = 423 mV. As this difference is decreased, ∆E = 396 mV in acid and 290 mVin strong alkali (0.1 M KOH), the kinetics become increasingly activation-controlledand slower. These findings are discussed briefly with regard to the possible use of (i)periodate as an alternative oxidant in the rapid screening of new potential wateroxidation catalyst material powders that are stable only under near neutral and/oralkaline conditions, and (ii) Ru(Adams) as a benchmark catalyst.
Resumo:
Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm-1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10-4. © 2012 Springer-Verlag.
Resumo:
Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.
Wireless Rotating Disk Electrode (wRDE) for assessing Heterogeneous Water Oxidation Catalysts (WOCs)
Resumo:
A novel method for assessing the activity of a powdered water oxidation catalyst (WOC) is described, utilising an easily-prepared wireless rotating disc electrode of the WOC, thereby allowing its activity to be probed, via the observed kinetics of water oxidation by Ce(IV) ions, and so provide invaluable electrochemical information.