19 resultados para Optimization techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional ( classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing - highlighting the crucial differences between these two methods - by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems ( namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An environment has been created for the optimisation of aerofoil profiles with inclusion of small surface features. For TS wave dominated flows, the paper examines the consequences of the addition of a depression on the aerodynamic optimisation of an NLF aerofoil, and describes the geometry definition fidelity and optimisation algorithm employed in the development process. The variables that define the depression for this optimisation investigation have been fixed, however a preliminary study is presented demonstrating the sensitivity of the flow to the depression characteristics. Solutions to the optimisation problem are then presented using both gradient-based and genetic algorithm techniques, and for accurate representation of the inclusion of small surface perturbations it is concluded that a global optimisation method is required for this type of aerofoil optimisation task due to the nature of the response surface generated. When dealing with surface features, changes in the transition onset are likely to be of a non-linear nature so it is highly critical to have an optimisation algorithm that is robust, suggesting that for this framework, gradient-based methods alone are not suited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The worsening of process variations and the consequent increased spreads in circuit performance and consumed power hinder the satisfaction of the targeted budgets and lead to yield loss. Corner based design and adoption of design guardbands might limit the yield loss. However, in many cases such methods may not be able to capture the real effects which might be way better than the predicted ones leading to increasingly pessimistic designs. The situation is even more severe in memories which consist of substantially different individual building blocks, further complicating the accurate analysis of the impact of variations at the architecture level leaving many potential issues uncovered and opportunities unexploited. In this paper, we develop a framework for capturing non-trivial statistical interactions among all the components of a memory/cache. The developed tool is able to find the optimum memory/cache configuration under various constraints allowing the designers to make the right choices early in the design cycle and consequently improve performance, energy, and especially yield. Our, results indicate that the consideration of the architectural interactions between the memory components allow to relax the pessimistic access times that are predicted by existing techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modelling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered.