72 resultados para Nevus, Blue
Resumo:
Poly(vinyl alcohol)-borate complexes were evaluated as a potentially novel drug delivery platform suitable for in vivo use in photodynamic antimicrobial chemotherapy (PACT) of wound infections. An optimised formulation (8.0%w/w PVA, 2.0% w/w borax) was loaded with 1.0 mg ml(-1) of the photosensitisers Methylene Blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Both drugs were released to yield receiver compartment concentrations (>5.0 mu g ml(-1)) found to be phototoxic to both planktonic and bicifilm-grown methicillin-resistant Staphylococcus aureus (MRSA), a common cause of wound infections in hospitals. Newborn calf serum, used to simulate the conditions prevalent in an exuding wound, did not adversely affect the properties of the hydrogels and had no significant effect on the rate of TMP-mediated photodynamic kill of MRSA, despite appreciably reducing the fluence rate of incident light. However, MB-mediated photodynamic kill of MRSA was significantly reduced in the presence of calf serum and when the clinical isolate was grown in a biofilm. Results support the contention that delivery of MB or TMP using gel-type vehicles as part of PACT could make a contribution to the photodynamic eradication of MRSA from infected wounds. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present new photometric and spectroscopic observations of an unusual luminous blue variable (LBV) in NGC 3432, covering three major outbursts in 2008 October, 2009 April and 2009 November. Previously, this star experienced an outburst also in 2000 (known as SN 2000ch). During outbursts the star reached an absolute magnitude between -12.1 and -12.8. Its spectrum showed H, He I and Fe II lines with P-Cygni profiles during and soon after the eruptive phases, while only intermediate-width lines in pure emission (including He II lambda 4686) were visible during quiescence. The fast-evolving light curve soon after the outbursts, the quasi-modulated light curve, the peak magnitude and the overall spectral properties are consistent with multiple episodes of variability of an extremely active LBV. However, the widths of the spectral lines indicate unusually high wind velocities (1500-2800 km s-1), similar to those observed in Wolf-Rayet stars. Although modulated light curves are typical of LBVs during the S-Dor variability phase, the luminous maxima and the high frequency of outbursts are unexpected in S-Dor variables. Such extreme variability may be associated with repeated ejection episodes during a giant eruption of an LBV. Alternatively, it may be indicative of a high level of instability shortly preceding the core-collapse or due to interaction with a massive, binary companion. In this context, the variable in NGC 3432 shares some similarities with the famous stellar system HD 5980 in the Small Magellanic Cloud, which includes an erupting LBV and an early Wolf-Rayet star.
Resumo:
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins. Molecular & Cellular Proteomics 8: 1811-1822, 2009.
Resumo:
Ten polymorphic nuclear microsatellite loci were developed from a microsatellite enriched genomic library of the blue shark, Prionace glauca. The utility of these markers for genetic studies of this globally distributed, heavily exploited, oceanic predator was assessed by screening 120 specimens sampled from six locations throughout the species’ range. Both moderately and highly polymorphic marker loci were identified. Three to 35 alleles were found to be segregating per locus (mean 10.1) with observed heterozygosities ranging from 24 to 91%. Evaluation of the cross-species amplification of these markers across 18 additional shark species indicates that these microsatellites are potentially useful for genetic studies of other species of conservation concern.
Resumo:
This article examines the transnational circulation of South Korean animation, with a particular focus on the production and release of "Wonderful Days" in Korea and around the world, arguing that Korean animation's international identity is defined in relation to the more visible Japanese cinema.
Resumo:
Voltage-sensitive ionic currents were identified and characterised in ventricular myocytes of the bivalve mollusc, Mytilus edulis, using the whole-cell patch-clamp technique. Two outward currents could be distinguished. A potassium A current (I-A) activated at - 30 mV from a holding potential of - 60 mV. This transient current was inactivated by holding the cells at a potential of - 40 mV and was also blocked by applying 4-aminopyridine (3 mM) to the external bath solution. A second current was identified as a delayed rectifier (I-K). This also activated at - 30 mV but exhibited a sustained time course and was still activated at a holding potential of - 40 mV. Both outward currents were reduced in the presence of tetraethylammonium ions (30 mM). A small number of heart cells also showed an inward sodium current (I-Na). This current appeared at potentials more positive than - 50 mV, reached a maximum at - 20 mV, and decreased with further depolarisation. I-Na was inactivated at a holding potential of - 40 mV and was blocked by tetrodotoxin (1 mu M). A second inward current had a sustained time course and was not inactivated by holding the cell at a potential of -40 mV, and was also not abolished by tetrodotoxin. This current peaked at 0 mV, decreasing with further depolarisation. Furthermore, it was enhanced by the addition of barium ions (3 mM) to the bath and was blocked by external cobalt (2 mM) or nifedipine (15 mu M) These findings are consistent with this being an L-type calcium current (I-Ca) The possible physiological roles of these currents in M. edulis heart are discussed. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
Valve and cardiac activity were simultaneously measured in the blue mussel (Mytilus edulis) in response to 10 d copper exposure. Valve movements, heart rates and heart-rate variability were obtained non-invasively using a Musselmonitor(R) (valve activity) and a modified version of the Computer-Aided Physiological Monitoring system (CAPMON; cardiac activity). After 2 d exposure of mussels (4 individuals per treatment group) to a range of dissolved copper concentrations (0 to 12.5 mu M as CuCl2) median valve positions (% open) and median heart rates (beats per minute) declined as a function of copper concentration. Heart-rate variability (coefficient of variation for interpulse durations) rose in a concentration-dependent manner. The 48 h EC50 values (concentrations of copper causing 50% change) for valve positions, heart rates and heart-rate variability were 2.1, 0.8, and 0.06 mu M, respectively. Valve activity was weakly correlated with both heart rate (r = 0.48 +/- 0.02) and heart-rate variability (r = 0.32 +/- 0.06) for control individuals (0 mu M Cu2+). This resulted from a number of short enclosure events that did not coincide with a change in cardiac activity. Exposure of mussels to increasing copper concentrations (greater than or equal to 0.8 mu M) progressively reduced the correlation between valve activity and heart rates (r = 0 for individuals dosed with greater than or equal to 6.3 mu M Cu2+), while correlations between valve activity and heart-rate variability were unaffected. The poor correlations resulted from periods of valve flapping that were not mimicked by similar fluctuations in heart rate or heart-rate variability. The data suggest that the copper-induced bradycardia observed in mussels is not a consequence of prolonged valve closure.
Resumo:
Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved