64 resultados para Neutrino interactions
Resumo:
Chronic administration of thiazolidinediones might predispose to cardiac hypertrophy. The aim was to investigate direct effects of rosiglitazone in rat ventricular cardiomyocytes maintained in vitro (24 h). Rosiglitazone (=10-5 M) did not increase protein synthesis and produced small inconsistent increases in cellular protein. In the presence of serum (10% v/v), but not insulin-like growth factor (IGF-1, 10-8 M) or insulin (1 U/ml), an interaction with rosiglitazone to stimulate protein synthesis was observed. The hypertrophic responses to noradrenaline (5×10-6 M), PMA (10-7 M) and ET-1 (10-7 M) were not attenuated by rosiglitazone. Rosiglitazone (10-7 M) did not influence protein synthesis in response to insulin (1 U/ml) and elevated glucose (2.5×10-2 M) alone or in combination, but attenuated the increase in protein mass observed in response to elevated glucose alone. In re-differentiated cardiomyocytes, a model of established hypertrophy, rosiglitazone (10-8 M–10-6 M) increased protein synthesis. Together, these data indicate that rosiglitazone does not initiate cardiomyocyte hypertrophy directly in vitro. However, during chronic administration, the interaction of rosiglitazone with locally-derived growth-regulating factors may make a modest contribution to cardiac remodelling and influence the extent of compensatory hypertrophy of the compromised rat heart.
Resumo:
We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.
Resumo:
A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.
Resumo:
We discuss the application of quantitatively accurate computational methods to the study of laser-driven two-electron atoms in short intense laser pulses. The fundamental importance of such calculations to the subject area is emphasized. Calculations of single- and double-electron ionization rates at 390 nm are presented. (C) 2001 Optical Society of America.
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Measurements of electron velocity distributions emitted at 0degrees for collisions of 10- and 20-keV H+ incident ions on H-2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.
Resumo:
Structural and thermodynamic properties of spherical particles carrying classical spins are investigated by Monte Carlo simulations. The potential energy is the sum of short range, purely repulsive pair contributions, and spin-spin interactions. These last are of the dipole-dipole form, with however, a crucial change of sign. At low density and high temperature the system is a homogeneous fluid of weakly interacting particles and short range spin correlations. With decreasing temperature particles condense into an equilibrium population of free floating vesicles. The comparison with the electrostatic case, giving rise to predominantly one-dimensional aggregates under similar conditions, is discussed. In both cases condensation is a continuous transformation, provided the isotropic part of the interatomic potential is purely repulsive. At low temperature the model allows us to investigate thermal and mechanical properties of membranes. At intermediate temperatures it provides a simple model to investigate equilibrium polymerization in a system giving rise to predominantly two-dimensional aggregates.
Resumo:
The conceptual design of a new electron beam ion trap primarily intended for the study of electron-ion interactions is outlined along with some preliminary predictions regarding its capabilities. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.